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Introduction

The United States Department of Transportation, National Highway Traffic Safety Administration NHTSA), Office
of Research and Development is the official government agency responsible for the implementation of the International
Technical Conferences on the Enhanced Safety of Vehicles (ESV). The Conferences are held approximately every two
years and hosted by participating Governments. Delegate and attendee participation includes worldwide governments,
automotive industries, motor vehicle research engineers and scientists, medical, insurance, and legal professions,
consumers, academia, private corporations, and international media.

The ESV Program originated in 1968 under the North Atlantic Treaty Organization (NATO) Committee on the
Challenges of Modern Society, and was implemented through bilateral agreements between the governments of the
United States, France, the Federal Republic of Germany, Italy, the United Kingdom, Japan, and Sweden. The
participating nations agreed to develop experimental safety vehicles to advance the state-of-the-art technology in
automotive engineering and to meet periodically to exchange information on their progress. Since its inception the
number of international partners has grown to include the governments of Canada, Australia, the Netherlands, Hungary,
Poland, and two international organizations -- the European Enhanced Vehicle-Safety Committee, and the European
Commission. A representative from each country and organization serves as a Government Focal Point in support of
the Conference.

In 1968 the Conference was known as the International Experimental Safety of Vehicles Conference. Over time, the
focus of the Conference shifted from concentration on the development of experimental safety vehicles to broader issues
of safety and international cooperation seeking reductions in motor vehicle fatalities and injuries. These issues include
program advances such as Pedestrian Safety, Frontal and Side Impact Protection, Biomechanics, Intelligent
Transportation Systems, and Vehicle Compatibility. In 1991, the participating governments agreed to change the name
of the Conference to “The International Technical Conference on the Enhanced Safety of Vehicles” to reflect the current
focus. The 14th ESV Conference, held in Munich, Germany, May, 1994, was the first conference in which the new
name was used, and “25 Years of ESV Development” was celebrated.

The 15th ESV Conference, held in Melbourne, Australia, May, 1996, was precedence-setting as well. A new 5-year
priority research program known as International Harmonized Research Activities (IHRA) was established under the
auspices of the ESV Conference. The program established six international priority research areas; Biomechanics,
Advanced Offset Frontal Crash Protection, Vehicle Compatibility, Pedestrian Safety, Intelligent Transportation Systems
and recently chosen Side Impact Protection. In May of 1997, NHTSA hosted a Public Workshop to share with its
partners the goals and objectives of IHRA. In November of 1997, the ESV Government Focal Points agreed that all
participating governments would join in these priority research programs, and that the programs would be governed by
an JHRA Steering Committee comprised mainly of the ESV Government Focal Points. Six Working Groups that now
exist in each of the priority research areas are led by participating Governments, and are comprised of government and
industry experts. The [HRA Steering Committee consisting of Government members meets biannually to review
recommendations and research plans being developed by the Working Groups.

This, the 16th ESV Conference hosted by Transport Canada, held in Windsor, Ontario, Canada, May 31-June 4, 1998,
was attended by delegates from twenty one (21) different countries. The [HRA Status Reports on the progress of the
five priority research areas were presented during this Conference. Well over 300 technical papers were accepted for
inclusion in the Conference Proceedings, with international authors representative of sixteen (16) different nations. This
Conference also marked the first time scientific poster presentations were given.

The 17th ESV Conference, the first Conference of the 21* Century, will be held in Amsterdam, The Netherlands, in
the year 2001. The year was chosen because IHRA will have met the 5-year deadline for reporting their vision, goals,
objectives, and achievements under the program.

We thank our international conference participants for their continued interest, dedication and support. It is an
outstanding example of the highest regard for automotive safety research we are certain will continue.
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ABSTRACT

Side-impact safety of passenger cars is assessed
in Europe in a full-scale test using a moving
barrier. The front of this barrier is deformable and
represents the stiffness of an 'average’ car. The EU
Directive 96/27/EC on side impact protection has
adopted the EEVC Side Impact Test Procedure,
including the original performance specification for
the barrier face when impacting a flat
dynamometric rigid wall.

The requirements of the deformable barrier face,
as laid down in the Directive, are related to
geometrical characteristics, deformation
characteristics and energy dissipation figures. Due
to these limited requirements, many variations are
possible in designing a deformable barrier face. As
a result, several barrier face designs are in the
market. However, research institutes and car
manufacturers report significant differences in test
results when using these different devices.

It appears that the present approvatl test is not
able to distinguish between the different designs
that may perform differently when they impact real
vehicles. Therefore, EEVC Working Group 13 has
developed a number of tests to evaluate the
different designs. In these tests the barrier faces are
loaded and deformed in a specific and/or more
representative way. Barrier faces of different design
have been evaluated. In the paper the set-up and the
rcasoning behind the tests is presented. Results
showing specific differences in performance are
demonstrated.

INTRODUCTION

In full-scale side impact testing, a mobile
deformable barrier face (MDB) is used to
represent the front of the bullet vehicle.
Currently"? the EEVC MDB is specified only in
terms of general dimensions and dynamic
performance, when impacting a flat unyielding
load cell wall. As a result of this ‘performance
only’ requirement, several different barrier face
designs have been developed. Research institutes
and vehicle manufacturers report that different
barrier designs, conforming to this specification,
can induce different types and amounts of
vehicle damage3, as assessed by the Eurosid-1
dummy.

EEVC Working Group 13 (WG13) have
defined a number of alternative test methods for
assessing the performance of side impact barrier
faces®. It also explains the objectives of each test
condition and suggest additional desirable
features based on current experience. These
methods could provide comparative data on
various barrier face designs to assist the
appropriate authorities to select one or more
suitable MDB designs, should a design and
performance specification be adopted. The
performance of a deformable barrier face can
only be fully assessed in a full-scale vehicle
impact test. In order to validate fully results of
the proposed component based tests it is
proposed that full-scale tests are also carried out.

This paper is based on a document prepared
by EEVC WG13 and describes tests considered
and defined by members of the Working Group
and by JASIC. Not all of the tests have been
fully evaluated and are subject to possible
amendment after preliminary trials.

CURRENT STATUS OF THE MOBILE
DEFORMABLE BARRIER FACE

The European Side Impact MDB face is
defined by geometrical characteristics, material
characteristics and deformation characteristics.
A MDB face should meet these requirements by
design.



MDB Design

The directive indicates that the barrier
should be manufactured from aluminium
honeycomb but alternative materials are
permitted if equivalence can be demonstrated. In
a honeycomb barrier a large volume of air can
be trapped during crush, assuming that the ends
of the cells are sealed during crush. The
performance of the barrier then being crushed
will come from a combination of honeycomb
crush and the compression/release of entrapped
air, In order to reduce test variability it is
proposed that the trolley surface, onto which the
barrier face is fitted, must be ventilated. [For a
barrier design with a continuous solid rear
surface it will be redundant feature.)

MDB Manufacturing

Certification, Quality Assurance and
Conformity of Production of an MDB are
considered to be vitally important areas and
suitable procedures should be defined, e.g.
barrier manufacturers should be approved to
IS0O9000 or equivalent. Each barrier should be
supplied with traceable certification
documentation.

MDB Certification

The certification test for the MDB is a
perpendicular full frontal impact into a flat rigid
load cell wall at 35kph. There is a large
difference between the certification test
conditions and the actual side impact test
conditions, in that the load cell wall does not
simulate the complex deformation
characteristics of the structure of the struck
vehicle, which can have a large effect on barrier
performance. In a vehicle impact, differential
crush occurs across the face of the barrier as
well as shear and bending forces within it. Thus
the current certification test is of very limited
use for examining barrier performance under the
conditions that it will experience in a vehicle
impact. Another limitation of the certification
test is that it is carried out at 35kph compared
with the vehicle test impact velocity of 50kph,
since the deforming element would not be
capable of absorbing all of the kinetic energy of
the mobile barrier moving at 50kph.
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DEVELOPMENT OF ALTERNATIVE
TEST METHODS

As a result of the present definition of the
certification procedure, many different barrier
designs showing identical behaviour in a
certification test are possible. In order to study
the differences between different barrier designs
and construction methods, a number of dynamic
tests have been developed. These tests, with
other suitable tests, could be used to investigate
in a controlled manner the dynamic crush
performance of side-impact MDB faces.

Pole Impact Tests

Local intrusion of rigid parts into the barrier
was found to be a serious point of concern,
especially when this part is located one time in
the middle of a barrier block, the next time at an
intersection between two blocks. To evaluate
this phenomenon, two pole impact tests were
originally defined by the working group
according to figure 1. The set-up was evaluated
by JASIC. For this purpose two fundamentally
different barrier designs were tested: a profiled
(pyramid-shaped) design and a solid (multi-
layered) design. The pyramid design barriers
had been manufactured with either a full width
or segmented front surface.

22km/h 20km/h

Figure 1: Evaluated test configurations for pole
impact

The tests were very severe with very high
levels of pole penetration. It was noted that
several of the outer blocks became detached
from the rear-mounting surface. Total barrier
penetration occurred when the pole was offset.
In addition, significant differences were
observed between barriers manufactured with a
continuous front surface and those manufactured
with a segmented front.

The evaluation by JASIC showed the need
for the pole test but in a slightly different set-up.
For that purpose the pole penetration was
reduced by adding a rigid wall behind the pole.
Additionally, the impact velocity for the centre




pole test should be 22kph and 16kph for the
offset pole test. The definitive test set-up is
shown in the next chapter.

Angled Wall Test

The angled wall test is originally set-up by
ACEA/IRC., In this test the wall comprises two
symmetrical plates at 30° (left-right
symmetrical). This wall profile is not
representative of a ‘vehicle like’ deformed
profile (see figure 2). Based on the analysis of
twenty side impact tests using fifteen different
types/models of vehicles, a new angled rigid
wall test was developed by TRL. The analysis
examined the post deformation of both vehicles
and barrier faces. The aim of the angled walls is
to reproduce ‘typical’ impact deformation on
barrier faces, as found in full-scale car tests, so
that more realistic performance comparisons can
be made between the various barrier designs.

Figure 2: Average profile of 20 crashed barriers.

Seven validation barrier face impact tests,
into the new angled wall, have been performed
using four designs of aluminium honeycomb
barrier face, including both profiled and solid
designs. The tests clearly show significant
differences in impact performance and barrier
failure mechanisms between the different
designs of barrier face. Therefore the angled
wall test is included in the barrier evaluation
programme. The definitive test set-up is shown
in the next chapter.

Yielding Wall Test

The interaction between barrier face and car
side structure governs the sequence of
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deformation and deformation pattern.
Depending on the stiffness experienced, the
barrier or the car will deform. Both structures
hit with an originally flat structure. At TNO, a
test set-up was developed which also allows the
wall to deform. The test produces a convex
deformation profile in the barrier.

The impacted wall is replaced by a three-
element energy absorbing system. The central
element is a rigid plate constrained to move
along the longitudinal axis of the mobile barrier
with controlled energy absorption. The two outer
elements are free-swinging rigid hinged doors
whose outer hinges are fixed and whose inner
edges bear on the centre plate. The wall at the
commencement of the impact is flat. As the
barrier loads the wall the centre plate is pushed
backwards and the two outer elements swing
developing a three surface concave profile.

A series of four tests was carried out to
evaluate the discriminating potential of this
method. Four different barriers were used, one
foam barrier and three profiled barriers. As one
of the most important features during side
impact is the velocity of the deforming door, the
velocity of the central element was monitored.

7

foam

~=~profiled, design 1
- — profiled, design 2
rofiled, design 3

Velocity [m/s}

0.10

Time [s]
Figure 3: ‘Door’ velocities with four different
barriers.



Figure 3 shows quite different velocities
during the time of impact. This justifies the
acceptance of this test in the barrier evaluation
programme. The definitive test set-up is shown
in the next chapter.

BARRIER EVALUATION PROGRAMME

The tests described here should not
necessarily be considered to be additional tests
or replacements for the certification test in the
Directive, but some of them could be used for
this purpose if it were considered advisable. It is
also acknowledged that the details of the test
procedures described below will need to be
specified in more detail before they could be
used for barrier evaluation.

High Speed Flat Wall Impact Test

This test is a perpendicular impact into a
load cell wall. It is fundamentally the same as
the current certification procedure, but at the
increased velocity of 50kph. To compensate for
the increase in energy an additional energy
absorption section, covering the full cross
sectional area of the barrier, is necessary. The
additional element is to be located between the
rear face of the test barrier and the impact
trolley. The stiffness of the additional section
must be uniform across the whole of the rear of
the barrier and have a stiffness equivalent to at
least twice the stiffest element from which the
barrier is constructed. The depth of this
additional element must be at least 300mm and
should not influence the crush behaviour of the
MDB face during the initial impact. It is
acknowledged that in this test the barrier face
may be totally crushed. The test is used to assess
the velocity sensitivity of the barrier's face when
compared to the standard 35kph certification
test. This test is likely to be able to reproduce
better the initial inertial impact stiffness that is
experienced in a vehicle test.

Pole Impact Tests

Two pole impact tests are proposed in order
to assess the extent to which the barrier face
represents that of the front of a real vehicle
when impacting a narrow obstacle generating a
concentrated force. They are designed to test the
ability of the barrier face to transfer impact
forces from one part of the barricr to an adjacent
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part in a similar manner to real vehicles and to
test its sensitivity to location of the stiff
structure. The pole tests will also be useful for
determining the build quality of the barrier,
since the outer edges of the barrier will not be
directly loaded during the initial phase of the
impact.

Central Pole Test - The first of the pole tests
is one with a pole located in the centre of the
barrier, shown in plan view in figure 4. The test
is performed at an impact velocity of 25 kph into
a non-deforming pole of 175mm radius, whose
apex is 250mm off the surface of the rigid wall.
The total barrier mass is 950 kg.

— 1 1 |

2& Rad 178mm
f 28 km/h

Barrier face

Figure 4. Central pole test.

Offset Pole Test - The second pole test is
similar to the central pole test but the pole is
offset to one side and is aligned with the
division between the centre and edge blocks,
figure 5. The offset pole test is performed at the
reduced velocity of 20kph. The results of this
test will indicate the sensitivity of the MDB face
to changes in the location of rigid structures.

I ) I 1 J

200

Barrier face

$onn

Figure 5. Offset Pole Test.
Rigid Angled Wall Tests

Two test configurations are described at an
impact velocity of 35kph. The impact wall is
similar to the MDB certification wall, with six
load measuring areas but with the addition of
rigid elements attached in appropriate places.
The purpose of these tests is to examine the
dynamic performance of the barrier face with
induced shear and bending with longitudinal




crush under controlled conditions. The first
configuration examines the influence of stiff
structures loading the ends of the barrier and the
second the influence of a rigid door sill and the
override condition. Neither test creates the
initial ‘vehicle type’ loading conditions of full
face loading followed by shear and bending,
nevertheless the tests will be helpful in studying
shear and bending problems, since they would
initiate any problems of instability or sensitivity
to barrier crush failure. Forces should be
measured and can be used for comparative
purposes but the prime dynamic evaluation
would be from the examination of the dynamic
behaviour recorded by high-speed photography.
The two tests, the Rigid Edge Loading Test
(REL) and Rigid Sill Loading Test (RSL) are
specified below.

Rigid Edge Loading Test - The REL test
uses the load cell wall with the load cells
modified by the addition of rigid wedge shaped
blocks, Figure 6. The surface of the wall is wood
faced to minimize slip.

7727457

N I tud 2l To mrdfe el o
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Figure 6. Rigid Edge Loading Test.

The test induces different deformations on
each of the outer blocks of the barrier face as
will be experienced in vehicle tests. The final
deformation profile of the deformable face in
plan view is representative of that of the final
deformation observed in a typical vehicle
impact. However, in a vehicle test the whole
face of the barrier is initially loaded at the point
of impact, whereas in this test the edges of the
barrier are loaded first.

Rigid Sill Loading Test - The RSL test,
illustrated in figure 7, simulates an impact into a
rigid vehicle sill. It uses the load cell wall with
the load cells modified by the addition of rigid
wedge shaped blocks mounted on the top three
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load cells. The surface of the wall is wood faced
to minimize slip. The barrier is inverted on the
mobile trolley so that the bumper section of the
barrier face impacts the simulated sill and is
prevented from riding over the sill during the
impact. The test induces the type of loading that
could be experienced in a vehicle impact,
although the loading sequence is not ‘car
equivalent’.

35km/h
e

10w ply —ead
Inverted il :

barrier

Figure 7. Rigid Sill Loading Test.
Yielding Wall Test

This test configuration will assess the
performance of the barrier face in a similar
manner to the way a barrier deforms when it
impacts a vehicle. In terms of barrier loading
sequence, it is considered to be the best of the
proposed tests. This test replicates the sequence
of initial flat loading followed by differential
progressive crush, bending and shear.

In the test, illustrated in Figure 8, the struck
vehicle is replaced by a three-element energy
absorbing system. The central plate is linearly
guided and supported by crumple tubes. The left
and right plates are free-swinging rigid hinged
doors, at the inner edges supported by the centre
plate. The crumple tubes are configured in such
a way that barrier loading and deformation in
this test simulates that occurring in a vehicle test
but produces three flat surfaces compared to the
parabolic profile of a vehicle test. The test would
be performed at a velocity commensurate with
car induced deformation - 50kph. The major
assessment of barrier failure would be based on
an evaluation of the deformation characteristics
obtained by high speed photography, although
some comparisons could be made if forces were
measured behind the MDB face.
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Figure 8. Yielding Wall Test.
Full-scale Vehicle Test

The final MDB evaluation should be based
on full-scale vehicle tests where the assessment
of barrier performance or variations in
performance are based on a) Visual deformation
of the barrier. b) Eurosid-1 based parameters at
the thorax, abdomen and pelvis levels and c)
Vehicle based parameters (acceleration and
deformation). The test procedure should be the
same as that prescribed in the side impact
Directive or Regulation"?. Tests should be
performed with the same model of vehicle, using
the full range of barrier faces under
consideration. In order to eliminate any element
of vehicle based bias, the tests should be
performed with at least two different types/sizes
of vehicle.

ASSESSMENT

Assessment techniques provide a robust
methodology to assess the potential performance
of any energy absorbing barrier (in particular
the European side impact deformable barrier) to
deliver a realistic, reliable and repeatable impact
to the side of a vehicle, in a legislative test.
Some of the tests and evaluation criteria are easy
to assess and are thus straightforward to use and
to rank the performance of any barrier designs.
Other criteria are much more difficult to
quantify since they are subjective.

Hereafter criteria related to proper design,
dynamic performance and subjective
requirements are summarized. In order to
evaluate these criteria it is proposed that a group
of technical experts on vehicle impact testing
could examine the barriers pre and post impact,
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together with film and transducer data of the
tests. The group of experts could then assess the
quantifiable and subjective data. They would
comment on and rank these aspects of barrier
performance and report.

Design Aspects

1. There should be traceable Certification and
Conformity of Production data for each
individual barrier. The data should preferably be
directly associated with the individual barrier
rather than by batch or design relationship.

2. The build and manufacturing quality,
dimensional control, bonding systems and
squareness of construction should be controlled.
3. The front surface of the deformable barrier
face should be continuous across the width of
the barrier face, thus preventing any object from
penetrating the barrier between adjacent blocks
or into the blocks without resistance.

4. The barrier material, adhesives and
construction should be environmentally stable,
covering aspects such as humidity, temperature,
UV sensitivity and ageing.

5. The barrier should be sufficiently robust to
survive transportation from manufacturer to test
facility, to survive pre-impact preparation and
the pre-impact acceleration of the trolley.

6. A barrier should deform differentially when
subjected to highly localised stresses, at any
position. Elements and/or inter layers should not
spread the load excessively within the barrier.

7. Post impact barrier disposal should be
environmentally satisfactory.

Quantitative Performance Aspects

1. All barrier face designs must fulfil the present
requirements as defined in the certification test
procedure"z.

2. No detachment of component parts or blocks
of the barrier shall occur during the crush phase
of the impact, although some smali opening up
of the barrier might be acceptable, after the peak
forces have been recorded.

3. The initial stiffness of the barrier face shall be
compared with the mean theoretical initial
stiffness. The difference should be no greater
that 10%. This holds for the certification test. In
the high speed flat wall impact test the initial
stiffness should be the same as in the 35kph test
within a tolerance of [20%]. The variation of
absorbed energy distribution for each area, as a



function of the total absorbed barrier energy,
from the 35kph test distribution should be less
than 10%.

4. The absorbed energy for each block should be
determined, if possible. These energies could be
used for further evaluation if necessary. If crush
forces behind the barrier face on the trolley are
measured comparisons can be made.

5. In tests with a symmetrical test configuration
the force measurements should be the same for
the outer edge blocks. Differences in the
instantaneous forces should be no greater than
[5%] of the lower measured force.

6. The forces measured at the pole/wall should
indicate progressive resistance throughout the
period of barrier penetration and not a very
rapid rise at the end of the test.

7. In full-scale vehicle tests using different
designs of barrier the measured parameters
(dummy and vehicle) should not vary by more
than 10%. This assessment is made for each
make/model of vehicle evaluated.

8. When different designs of barrier are
compared the proportion of absorbed energy for
each block area and force time history should be
similar, if crush forces behind the barrier face
on the trolley are measured. This assessment is
made for each make/model of vehicle evaluated.

Subjective Requirements

1. The motion and deformations of the barrier
face will be examined photographically. A
failure would be defined as one ‘in which a
block or interface moved into an adjacent block
or interface inducing a failure in the adjacent
member, that could result in a reduction in the
for/aft stiffness of that element’.

2. The barrier should fail by crush and not by
explosion or other poorly controlled fracture
mechanism. Disassembly of the tested barrier
may be necessary in order to examine the
collapse mechanism(s) of the barrier.

CONCLUSION

The tests and associated assessment
techniques should give a clear indication as to
the relative merits of the different barrier
designs and design concepts. It is possible that
the sub system tests will lead to a
recommendation for either a single design
specification for a MDB face or to a significant
tightening up of the existing specifications
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possibly excluding some generic designs of
MDB face. The vehicle tests will indicate
whether any unacceptable variability would still
exist following such recommendations. It is
therefore proposed that if any measured
parameter, in the vehicle tests, varies by more
than 10% between tests using the
‘recommended’ barriers, with the same model of
vehicle, then a further tightening of the barrier
specification should be undertaken, and
evaluated as appropriate. If a single design
specification were to be recommended then at
least two vehicle tests, with each type of vehicle,
and barriers from different manufacturing
batches, should be undertaken to investigate the
reproducibility of the performance of the single
barrier design in vehicle tests.

FUTURE WORK

Funding for carrying out the barrier
evaluation programme is being sought. It is
expected that the programme will start late 1998
and will be completed by the end of 1999.
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ABSTRACT

This paper reviews the differences between the US and
European regulations and describes the results of the
Australian Federal Office of Road Safety’s research
program to propose a harmonised dynamic side impact
standard that combines the better features of the US and
European regulations and using the BioSID dummy. The
paper also includes a Harm reduction analysis showing the
likely benefits of the proposed harmonised standard over
the US and European regulations.

INTRODUCTION

After frontal impact crashes, side impacts are the
greatest killers of vehicle occupants on Australian roads,
accounting for over 25% of fatalities.

Australian Design Rule (ADR) 29/00 - Side Door
Strength was introduced in 1977 to provide side impact
crash protection. Australia was the only country outside
North America to introduce this design requirement.

In 1995, the Federal Office of Road Safety released for
comment a draft Australian Design Rule (ADR) for
dynamic side impact protection. The draft ADR will be
introduced in 1999 and allows compliance to be
demonstrated to either the US Federal Motor Vehicle
Safety Standard 214 or the Economic Community for
Europe Regulation 95.

These two regulations were developed on either side of
the Atlantic during the 1980s and early 1990s. Although
their intent is the same (to improve side impact
protection), their detailed requirements are quite different.

The current situation has forced manufacturers to “fine
tune” their designs to ensure compliance with the US or
European regulations, depending on the market
into which the vehicle is sold. Manufacturers around the
world have indicated general support for a single
harmonised standard to which the car is designed.
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CURRENT OVERSEAS REGULATIONS

The US and European regulations specify two
fundamentally different test procedures and test dummies.

Both use a mobile trolley with a deformable face to
impact the car being tested. However, the mass of the
trolley, specification of the deformable face, test speed,
the test dummy and injury criteria are different. While
Australian crashed vehicle studies have shown that head
and neck injuries are prevalent locally, head injury is only
addressed in the European regulation.

US Standard FMVSS 214

The major components of the US dynamic test
specified in regulation FMVSS 214 comprise:

a moving trolley of 3010 Ibm (1365 kg),

a crabbed barrier impact angle of 27 deg,

a barrier impact speed of 33.5 mph (54 knvh)

a homogeneous deformable barrier face

US SID dummies in the front and rear near-side seats.

Trolley Configuration - The trolley mass of 1365 kg
was the US average fleet mass when the rule was being
developed.

FMVSS 214 calls for the impacting trolley to be
"crabbed” at 27 degrees and to strike the test vehicle at an
impact speed of 33.5 mph (about 54 km/h). This is
illustrated in Figure 1. The velocity component
perpendicular to the target vehicle is 30 mph. The crabbed
configuration was important to simulate real world
intersection crashes where both vehicles are moving. This
was subsequently confirmed by Dalmotas (1994) in
comparative crash tests undertaken by Transport Canada
using North American vehicles.
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Figure 1 — US Trolley Configuration

US_Deformable Barrier Face - The US barrier
construction is essentially homogeneous with a protruding
bumper layout as shown in Figure 2. The main section is
constructed from 45 psi (£2.5 psi) honeycomb material
with the bumper section in 245 psi (£15 psi) aluminium
honeycomb material. The US barrier element is
considerably stiffer than the European barrier.
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£2.5psi crush strength
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Figure 2 —~ US Deformable Barrier
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The bottom edge of the US barrier is 280 mm from the
ground. The bumper element is 330 mm above the ground
and the barrier is 1676 mm wide.

The SID Dummy - The US regulation calls for tests
involving the Side Impact Dummy (SID) developed by the
NHTSA. SID is a modified Hybrid 2 developed
specifically for side impact testing after extensive cadaver
testing in the US and Germany. Its biofidelity
requirements led to unequal masses in the dummy,
especially its relatively soft arms which was intended to
incorporate rib characteristics.

US Injury Criteria - In developing SID, measurement
of deflection forces was difficult because of rotation,
therefore acceleration of the thorax and lower spine
became the major injury criteria. This has since become a
criticism of SID, both outside and inside the US. Delta-V
distributions from NASS showed that the 50th percentile
was somewhere between 15 and 20 mph which was
subsequently adopted as the design speed.

The injury criteria are limited to:

Peak lateral pelvis acceleration and the
e Thoracic Trauma Index (TTI(d))

where  TTId) = Y, (Gg + Gis)
G = greater of either upper or lower rib acceleratiors ;_‘
Gys = lower spine (T12) peak acceleration ;

The SID dummy criteria was based on hard thorax
injuries including liver and kidney injuries but not soft
tissue injury in the abdomen. There is no instrumentation
available for measuring these injuries other than those
covered by rib acceleration.

SID has no provision for specifying any head injury
criteria. US accident data shows that the greatest source
of severe injury in side impacts is to the head, not the
thorax. Therefore, FMVSS 214 does not really address
the major source of injury from side impacts. The US
have issued a revision to FMVSS 201 which is effectively
an upper interior padding standard for side rails and A-
and B-pillars aimed at addressing at least part of these
head injuries from side impacts.

Impact Point - FMVSS 214 requires the front edge of
the impacting barrier to strike the test vehicle at a point
dependent on the wheelbase (W) of the vehicle:

e 37 inches (940 mm) forward of the centre of the
vehicle’s wheelbase, if W < 114 inches (2896 mm),

e 20 inches (508 mm) rearward of the front axle
centreline if W > 114 inches.



The majority of cars available in Australia fall into the
first category.

ECE Regulation 95

The test procedure was developed by the European
Experimental Vehicle Committee (EEVC) and the major
components of the dynamic test specified in ECE
Regulation 95 comprise:

a moving trolley of 950 kg (2090 Ibm)

a perpendicular barrier impact

a barrier impact speed of 50 km/h (30 mph)

a non-homogeneous deformable barrier face
EuroSID dummy in the front near side seat only.

Trolley Configuration - The trolley mass is 950 kg
which was about the average mass of European vehicles at
the time it was developed. There was very little effect
observed in testing different masses up to 1100 or 1300 kg
because most of the peak loads occur between 35 and 50
msecs and the trolley mass has little influence at that time.
The mass of the trolley influences the amount of intrusion
but has less effect on dummy performance compared to
peak loading.

A perpendicular impact configuration was chosen
because some FEuropean manufacturers believed this
configuration offered best protection to occupants of their
vehicles in real world accidents. A perpendicular impact
was also the simplest testing option and did not appear to
compromise safe vehicle design.

An impact speed of 50 km/h was chosen for the
standard based on the distribution of impact speeds
observed in real world accidents in Europe.

Canadian tests compared both barriers in crashes to
North American vehicles and felt that the US barrier was
slightly more representative of US vehicle crashes,
particularly those involving MPV's. European tests claim
that the European barrier reproduced quite well the worst
case outcomes for a European vehicle fleet.

European Deformable Barrier Face - The European
barrier design aims to represent the stiffness values of
impacting passenger car front structures, ie front
longitudinals, engine etc. These values were derived from
French testing of representative European passenger car
crashes against a rigid barrier wall. Subsequent
testing of Japanese cars in Japan showed that these cars
also correlated well with these European force
characteristics. The barrier face is 1500 mm wide (see
Figure 3).
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Figure 3 — ECE Deformable Barrier

The height of the barrier was originally set at 300 mm
from the ground surface to the lower edge and practically
all development work involved in ECE Regulation 95 was
based on this barrier height. This was slightly above the
bottom edge of the US barrier (280 mm) but below the US
barrier’s bumper height of 330 mm. Representations by a
few European member countries led to the barrier height
being lowered to 260 mm when Regulation 95 was first
issued. However, the EC Directive for dynamic side
impact protection has been finalised with a barrier ground
clearance of 300 mm and ECE R95 has reverted to this
figure.

EuroSID Dummy - The Europeans felt that there was
a need for a more sensitive measuring instrument and
injury criteria in side impacts than that offered by SID. As
a result, they set about developing EuroSID, a joint
exercise involving several European countries. While
EuroSID has arms, the specification calls for them to be
out-of-the-way during impact to minimise their protective
role for the chest.

The EEVC did recommend dummies in both the front
and the rear seating positions on the struck side only.
However, it seems that most of the development work has
been done with only a front seat dummy on-board. The
requirement for a rear dummy was subsequently dropped
in the ECE regulation.

Dummy Test Criteria - European studies had shown

that the most severe injuries in side impacts were to the
head, thorax, abdomen and pelvis, so EuroSID was
required to detect injuries in these areas.

Head Injury Criteria (HIC) was considered adequate
for measuring head injury. For the chest, the Europeans
felt that TTI was not appropriate for measuring these
injuries and subsequently adopted chest deflection and
Viscous Criteria (V*C).  Appropriate values of this
parameter were determined for EuroSID (European tests
showed that a V*C of 1 = 30% to 40% probability of
injury for AIS3 or above). Concern has been expressed by
some about the repeatability of the Viscous Criteria with
the EuroSID dummy so it has been agreed to just record
the readings for the first 2 years of the regulation without
it being considered as a pass/fail criterion.



Regulation 95 also has abdominal and pelvic injury
criteria which limit the peak abdominal and pubic
sympbhysis force as measured by EuroSID.

Impact_Point — The impact point of the barrier is
centred on the front seat “R-point”.

EXAMINING THE FEASIBILITY OF A
HARMONISED STANDARD

Australian field data also indicated that side impact
crashes caused head, thoracic, abdominal and pelvic
injuries.  Therefore any harmonised standard from
Australia’s view needed to address these injuries.

Mobile Deformable Barrier Tests

The first stage of the research program was to conduct
crash tests to the following requirements using a vehicle
model understood to comply with FMVSS 214 to:

US FMVSS 214
ECE Regulation 95
A harmonised standard described below.

The two tests based on current regulations were
conducted in full accordance with test procedures set out
for FMVSS 214 and ECE Regulation 95.

Car to Car Tests

A second stage of the program involved two car to car
tests with different bullet vehicles for comparison with the
mobile barrier tests:

o Ford Falcon as a bullet car.
¢ Nissan Micra as bullet car.

The Ford Falcon was chosen because it has a stiff front
structure and is of the size and mass typical of the vehicles
from which the FMVSS 214 barrier was reportedly
developed to represent.

The Nissan Micra is of the size and mass typical of the
vehicles from which the ECE R9S barrier was reportedly
developed to represent.

The impact point for both tests was the front seat
R-point (same as R95).

HARMONISED SIDE IMPACT TEST

The harmonised dynamic side impact procedure
included the following features:
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¢ BioSID dummies in the front and rear outboard seating
positions on the impacted side.

e FMVSS 214 crabbed trolley with ECE R 95
deformable barrier element.

e FMYVSS 214 impact geometry.

* ECE Regulation 95 injury criteria to the degree which
BioSID is capable of recording.

This test configuration was chosen for the following
reasons:

e FMVSS 214 crabbed barrier better reproduces a
typical intersection side impact crash.

e FMVSS 214 test  configuration requires
countermeasures for both front and rear seat
occupants.

e BioSID is generally considered to be the more
biofidelic dummy.

e ECE R 95 barrier face better represents a vehicle front
structure.

o ECE R 95 injury criteria more fully covers the range of
injuries seen in side impact crashes.

US experience confirms that the benefits of having a
rear dummy are really quite small since occupancy rates,
like Australia, are quite low. It would be difficult to justify
the need for a rear seat dummy on a cost benefit basis. It
should be noted that performance standards will not
necessarily guarantee rear seat protection without a rear
seat dummy and a separate impact test involving a more
rearward impact location.

For this project, a rear BioSID dummy was also used
and the benefits determined. Because the US barrier is
wider, there are expected to be benefits for smaller cars
where the crush profile will encompass the rear seating
position.

TEST VEHICLES
Target Vehicle

Ford EF2 Falcon Gli sedans (wheelbase 2791 mm)
were used as the target vehicle for all the tests. This
vehicle was chosen because it is a high volume Australian
produced vehicle claimed to meet the requirements of
FMVSS 214.

Seats and trim were removed from the non-impacted
side as required to install data acquisition equipment etc.
The vehicles were ballasted as necessary to the
requirements of the particular test procedure.



Bullet Vehicles

The Ford Falcon was ballasted to the FMVSS 214 test
mass and the Nissan Micra was ballasted to the ECE R95
test mass.

TEST RESULTS

The results from the test series were used as part of the
input data for MUARC to make Harm benefit calculations.
The injury data is summarised in Table 1. Overlay
plots of the following are presented at the end of the

paper:

Vehicle intrusion at H-point
B-pillar bottom acceleration
Pelvic acceleration

Lower spine acceleration
Upper rib acceleration

The results of the 3 mobile barrier tests and the 2 car to
car tests indicated that:

e The onset of vehicle decelerations and dummy
readings in the 214 test always led the other tests.

e The onset of vehicle decelerations and dummy
readings in the car to car test with the Micra always
lagged the other tests.

e The onset of vehicle decelerations and dummy
readings in the R9S, Hybrid and the car to car test
with the Falcon are similar.

Car/barrier stiffness is more important in determining
intrusion and injury severity than whether the
impacting car/barrier is crabbed or perpendicular.

e The car/barrier stiffness determines the onset of
vehicle decelerations and dummy readings. Higher
stiffness means earlier onset.

e Barrier (car) mass does not appear to have an effect
on load onset.

Barrier (car) mass does affect amount of intrusion.
Spine responses peak between 30-45 msec.
e Rib responses peak between 30-35 msec.

TEST SERIES CONCLUSIONS

The following conclusions have been drawn from the
test series:

e  Peak dummy responses are reached before 45 msec.

e RO5 barrier element’s stiffness correlates well with a
typical large Australian passenger car.

e Vehicle (barrier) stiffness determines load onset
timing.

e Higher stiffness means earlier loading of vehicle
structure and dummy.

o Crabbed configuration loads the rear occupant more
than a perpendicular impact.
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Figure 4 — Vehicle Crush
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HARM ANALYSIS

To demonstrate the likely cost effectiveness of the
proposed harmonised side impact standard, a Harm benefit
analysis was undertaken using the Harm Reduction
method previously used in other side impact benefit
analyses (Fildes et al 1995 and 1996).

The Harm Reduction method has been used previously
for estimating the likely benefits of new occupant
protection countermeasures (Monash University Accident
Research Centre 1992). Harm is a road trauma metric
which contains both frequency and cost components and is
therefore able to express the likely reductions in injuries
from the introduction of a new measure into financial
benefits.

The systematic building block approach used in this
study permitted a body region by contact source analysis
of benefits which provided an objective estimate of the
consequences of Australia adopting either the existing two
candidate regulations or the proposed harmonised side
impact standard.

Data Sources Available

An Australia-wide database was necessary to assess the
likely injury reductions for both standards. A detailed
database was constructed in 1991 of national injury
patterns by body regions, restraint conditions and contact
sources, along with a series of resultant Harm matrices
using BTCE human capital cost estimates (Monash
University Accident Research Centre 1992).  This
comprehensive trauma analysis, based on over 500 real-
world crashes examined in the Crash Vehicle File by the
Monash University Accident Research Centre, offered a
baseline trauma pattern upon which estimates of Harm
reductions could be made.

While this database was several years old, it
nevertheless was still the most up-to-date source of
baseline information available. Moreover, while the
numbers of crashes (and hence injuries) have reduced over
the last 5 or 6 years, their costs have risen such that the
overall cost of trauma is probably still similar to that
estimated for 1991. Thus, this database was judged
suitable for use in this study, too.

Injury Reductions

As in the previous side impact benefit analysis (Fildes
et al, 1996), there was again very little published data
available that reported on injury reductions associated
with a harmonised standard, apart from the test results
reported earlier in this study and some figures published
by Dalmotas, Newman and Gibson (1994). Thus, it was
deemed necessary again to assemble a panel of
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international experts to establish the likely injury benefits
that would accrue to Australia for the harmonised
standard.

A one-day workshop was organised in May 1997 in
Washington DC comprising representatives from the car
industry, government researchers, representatives of
consumer groups and the study team. The workshop
provided an up-to-date account of recent side impact
regulation developments as well as the likely injury
benefits to Australia by adopting the harmonised standard.

It was clear from the discussion at the meeting that
many of the assumptions made in the earlier side impact
benefit study (Fildes et al 1995) had not been
substantiated by more recent published data and
experience. Therefore it was decided that part of the task
of assessing harmonised benefits should also involve
adjusting the earlier figures for FMVSS 214 and ECE 95
in line with more recent expectations.

Relevance Assumptions

Hence, a number of assumptions were agreed to for
determining the likely benefits of a hybrid side impact
regulation for Australia, as well as more recent
expectations for the existing two dynamic side impact
standards FMVSS 214 and ECE 95 and these are outlined
below.

1. The three standards all requires a test at a crash
severity of around 27km/h that will provide benefits at
crash speeds up to 64km/h. No benefits are assumed
above this speed.

2. The benefits will apply equally to both car-to-car and
car-to fixed-objects in side impact collisions.

3. The benefits will apply equally to occupants involved
in both non-compartment and compartment struck side
impacts.

4. Near-side occupants who sustain AIS 5 or 6 fatal head
injuries are excluded from any benefit from the standards.
Reductions in chest injuries to occupants who sustain a
non-fatal head injury are included.

S.  All head injuries (to survivors) in side impacts from
contact with the door panel are reduced by 2 AIS and face
injuries by 1 AIS over the crash severity range of 0-
64km/h. For EuroSID (and BioSID), an additional benefit
of 2 AIS applies for head contacts with the side rails.

6. Benefits will apply to the chest, pelvis, femur,
shoulder, upper extremity, head and face injuries caused
by contact with the door panel, hardware or armrest.



Internal organ benefits will vary depending on the test
dummy used.

7. An incremental reduction in TTI or V*C on injuries
to the chest from door contacts for near-side occupants
can be expressed as a crash severity change.

8. The injury risk curves for TTI and V*C apply to the
range of impact speeds for side crashes at severities less
than 64kmvh for injuries of AIS 3 or greater.

9. Forty-five percent of AIS 3-6 and 90% of AIS 1-2
chest injuries over the crash severity range of 0 to 64km/h
are expected to be affected by a side impact standard,
based on NHTSA pre-standard crash tests.

10. A reduction of AIS 2 in chest injuries is expected by
the use of SID and TTI over the crash severity range and
an AIS 3 reduction is expected by the use of EuroSID and
V*C measures.

11. It was assumed that there is some heart benefits
approximating 25% of that relevant to the hard thorax for
SID and EuroSID but 50% for BioSID given its superior
injury criteria and test performance.

12. New Australian test data show that V*C is a more
critical parameter than TTI and this should lead to
additional countermeasures to protect the abdomen. Thus,
an overall injury reduction for abdominal injuries of AIS
AIS 3 for V*C from EuroSID across the relevant crash
severity range is expected (no benefit was claimed for
FMVSS214 as SID does not measure abdominal injury).

13. Only upper extremity injuries from contact with the
door panel or hardware at or below the crash severity
range are relevant. As no test data were available on the
likely reductions in contacts, a modest AIS 1 injury
reduction is assumed.

14. A dynamic side impact standard will result in the
elimination of all injuries with exterior contacts for far-
side occupants, ejected through the far-side door over the
severity range of 0-40km/h.

15. As the European test procedure does not include a
rear seat dummy, no rear seat benefit should be awarded to
the ECE Reg 95 standard and similar benefits would apply
to front and rear seat occupants in both FMVSS 214 and
the proposed Hybrid test.
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RESULTS OF THE ANALYSIS

A detailed system of spreadsheets was assembled for
calculating the "benefits of both the existing and
harmonised standards. Relevance figures were assigned
by body region and seating position (near- or far-side of
the vehicle) and the subsequent Harm units removed were
computed. The savings by body region and seating
position were then summed to arrive at the total estimate
of savings for both standards. Annual Harm saved was
converted into Unit Harm benefits using both a 5% and a
7% discount rates with fleet life estimates of 15 and 25
years. The results of the analysis are shown in Table 2
below and discussed below for each of the three
regulations.

Revised FMVSS 214 Benefits

The revised benefit estimate for the US standard,
FMVSS 214, assuming that all vehicles in the Australian
fleet were to comply instantaneously was A$117 million.
This is 86% of the original figure previously published
(A$136 million) essentially due to reductions in expected
savings in abdominal, chest and head injuries because of
revised performance criteria. This still a 3.7% reduction in
vehicle occupant trauma annually if FMVSS 214 were to
apply in Australia. The unit benefit per car would be
between $116 and $145.60 per car, depending on the
discount rate and fleet life figures used in the calculation.
At $100 expected installation cost per vehicle, adopting
this standard would still be cost-beneficial.

Revised ECE 95 Benefits

The equivalent revised figure for the European
standard is A$122 million each year if all vehicles in the
Australia fleet instantly complied. This is also only 83% of
the figure originally estimated based on more recent
evidence of performance expectations. It should be noted
that most of the reduced Harm for the European standard
comes from exclusion of any rear seat benefit because of
the lack of a rear seat dummy (this was not anticipated at
the original workshop held in Munich in 1994). On this
basis, the unit Harm benefit would be somewhere between
$121.40 and $152.40 per car, would still be cost-
beneficial, and would yield a slightly higher reduction in
occupant trauma annually of 3.9%.

Harmonised Proposal Benefits

Finally, the harmonised proposal outlined at the start
of this paper is expected to save A$142 million annually,
based on the assumptions listed by the expert panel. This
is 16% greater than ECE 95 and 22% greater than FMVSS



214 because of the expected more stringent test procedure,
the inclusion of a rear seat dummy, and the likely
improvements from the use of BioSID test dummies. This
would amount to an improved 4.5% reduction in vehicle
trauma annually and with a unit Harm benefit of between
$141.70 and $177.50 per car, would yield a Benefit-Cost-
Ratio of 1.5 or greater. The harmonised proposal is
clearly superior to either of the two existing standards and
would overcome the difficulty of having different side
impact standards in different continents.

Benefits for ECE 95 with Rear Dummy

An alternative to the harmonised standard proposal
outlined in this paper could be a modified ECE 95
regulation that included a rear seat EuroSID dummy.
While this is unlikely to provide all the benefits expected
from the harmonised standard, it might nevertheless be a
suitable first step to combining the two existing standards
that could be acceptable to both regulatory authorities.
Naturally, the harmonised standard would still be more
desirable in the longer term.

It is difficult to know what additional benefits would
accrue to the modified ECE 95 standard because of the
lack of test data available on rear seat tests with the
European procedure. Results published by Ohmae,
Sakurai, Harigae and Watanabe (1989) for one car showed
that its performance was well under current requirements
for front seat dummies. It might be that with a rear seat
dummy installed in a ECE 95 test, some global
improvement in rear seat protection would be forthcoming
as responsible manufacturers would be expected to
respond to this requirement with a range of suitable
countermeasures. Assuming a 15% improvement was
achieved by this global improvement, the annual benefits
in Australia would be A$129 million with a unit Harm
saving of between $128.60 and $161.40 per car.

CONCLUSIONS

The harmonised test proposal provides greater benefits
than either of the two existing standards and would
overcome the difficulty of having different side impact
standards in different.

The mass of the impacting trolley does not have an
effect on ultimate injury outcome.

For a modified ECE R9S5 test with a rear seat dummy
to realise a benefit for rear seat occupants, it is believed
that a crabbed trolley would need to be employed.

There is a strong argument for further research into
developing an agreed harmonised regulation on dynamic
side impact protection. The two major areas of work
would appear to be on:
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e An agreed harmonised dummy.
e An agreed harmonised barrier element design
(stiffness).
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TABLE 1

Summary of injury data

FMVSS 214 52}: ECER95 - Harmonised - v"Falcén’: Mlcra
(USSID) | (EuroSID) | - (BioSID) (BioSID) | (BioSID) | -
_ TTIDriver(p) |  64.1 131 757 88.2 618
TTI Passenger () | =23 N/A 57.5 434 428
~ PelvicDecel | 9.1 64.4 723 952 56.4
 Driver(®
_ PelvicDecel | 920 N/A 443 49.1 30.8
 Pavenger(®)
. HPCDriver | NA 99 147 221 67
. HPC Passenger N/A N/A 125 289 160 [.-;'1‘000 .
V*C Driver N/A 1.02 0.80 0.89 076 | 10
V*C Passenger N/A N/A 0.49 0.22 0.09 | 10
Rib Deflection N/A 40.4 424 468 413 | 420
Driver (mm) ‘—
Rib Deflection N/A N/A 34.0 259 223 42,0
Passenger (mm) .
PSPF Driver (kN) | N/A 1.0 2.59 5.02 202 | 60
PSPF Passenger N/A N/A 3.51 0.17 023 | 60
(kN) :
LEGEND

Thoracic Trauma Index
Head Performance Criterion
Viscous Criterion

Pubic Symphysis Peak Force

TTI
HPC
Vv+C
PSPF
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TABLE 2

Summary Table of Harm Benefits

BODY REGION INJURED U.S. EUROPEAN HARMONISED
STANDARD ECE Reg. 95 PROPOSAL
FMYVSS 214 $million $million
$million
HEAD INJURIES near-side 8.7 9.7 10.8
far-side 16.1 16.3 18.1
FACIAL INJURIES near-side 0.6 0.7 0.8
far-side 0.1 0.1 0.1
HARD THORAX INJURIES near-side 433 43.8 48.8
far-side 2.9 2.9 3.2
INTERNAL ORGANS near-side 04 3.2 7.2
far-side 0.3 0.4 0.4
ABDOMINAL INJURIES near-side 0 53 8.4
far-side 0 0 0
PELVIC INJURIES near-side 44 39 4.4
far-side 0.1 0 0.1
UPPER LIMB INJURIES near-side 17.0 15.2 17.0
far-side 3.6 3.2 3.6
LOWER LIMB INJURIES near-side 17.6 15.8 17.6
far-side 1.2 1.1 1.2
TOTAL NEAR-SIDE HARM SAVED ($million) 92.0 97.6 115.0
TOTAL FAR-SIDE HARM SAVED ($million) 24.6 24.4 27.1
TOTAL HARM SAVED ANNUALLY ($million) 116.6 122.0 142.1
UNIT HARM - $ per car (7% @ 15yrs) $116.00 - - $121.40 $141.40
UNIT HARM - § per car (5% @ 25yrs) $45.60 $152.40 $177.50
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DEVELOPMENT OF SIDE IMPACT AIR BAG SYSTEM FOR HEAD CHEST PROTECTION
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ABSTRACT

Most of the Side Impact Air Bag systems in the
current market are designed to protect the thorax area only.
The new Head and Thorax SRS Side Impact Air Bag
system, which Nissan recently introduced into the market,
was designed to help provide additional protection for the
head in certain side impacts. The system may help
protect occupant head contacts when the vehicle collides
into a tree, or the high hood of a large striking vehicle.
This paper introduces the additional features and function
of the new Head and Thorax SRS Side Impact Air Bag
system, and some evaluation results in laboratory testing,

Figure 1. Head & Thorax Side Impact Air Bag
SIDE IMPACT ACCIDENT RESEARCH

Accident statistics in Japan are shown in Figure2.
The fatality rate in side impact collisions is rated second
(24%) of the total, following frontal impacts, which is
71%.

other
(23.5%) 52(1.1%)

O Front
O Side
ORear

R other

n=4818

Figure 2. The fatality rate in impact collisions.
Accident statistics in Japan(1993).
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In side impacts with AIS>3, the occupant in the struck
side suffers injury mostly in the head area, second in
thorax, third in pelvis, and fourth in the abdomen.

If Head and thorax injuries are combined , they occupy
more than 50% of the AIS>>3 injuries. (See Figure 3.)

%)

40
HEAD
Dby g~ AIS>5 5396 B AlS>1
20 | 53 0 A1$>2 [
S Thorax |G% AlS>3
® - AIS>3 2296
< <20 "‘/
S 5&‘

I :. 'l'.~ dnn-n b n‘.lx
Figure 3. Injury area distribution of the occupant on the struck
side in side impacts.

Data source ; National Police Agency, Management and

Coordination Agency.

BACKGROUND OF HEAD AND THORAX SRS
SIDE IMPAPCT AIR BAG SYSTEM
DEVELOPMENT

The result of side impact collision research initiated
the development of the Head and Thorax SRS Side Impact
Air Bag System to help provide additional protection to
the head area in certain side impacts.

CONFIGURATION OF HEAD AND THORAX SRS
SIDE IMPACT AIR BAG SYSTEM

The total Hear & Thorax SRS Side Impact Air Bag
system diagram is shown in Figure.4

1. A satellite sensor which detects the impact force is
located on the bottom of the each center pillar.

2. A control unit, which provides signals for
deployment and diagnosis of the whole system is
located on the center of the tunnel (control unit is
common for frontal impact SRS system).

3. An air bag modulc which is located in the side of the
scat back .

4. A warning light which is installed in the instrument
panel to indicate system malfunction.



]

Warning light -

Satellite sensor
f——

q Air bag module

Control unit

Figure 4. Configuration of Head & Thorax SRS Side Impact
Air bag system.

Sequential Event of Air Bag Deployment is
described as Follows

1. A satellite sensor in the struck side and a safing
sensor in the control unit detect the impact force.

2. If a satellite sensor judges that the impact force is
severe enough to deploy the air bag, the control
unit provides a signal to the air bag module.

3. The gas produced by the inflator deploys the air bag.

CONFIGURATION OF HEAD AND THORAX SRS
SIDE AIR BAG MODULE

Air bag module consists of;

Bag to protect Head and Thorax

Inflator

Housing to secure Bag and Inflator

Module tube to protect bag and to control the air bag
deployment trajectory.

b N S

Module tube(main)
AT -
15
4 f.{ /‘l Module tube
:ylﬁ PLx"’-/
o T
$ T AL
Housing [} l "
:i i e (t\L.:\:
bl §
RN [
xlﬁﬁ;b Inflator Washer

Figure 5. Configuration of Air Bag module

The air bag module is attached to the seat back frame and
covered by cushion and the trim of the seat back.

When the air bag deploys, air bag deployment force tears
the seam and the bag comes out in a forward direction.
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' Air Bag
Seat Back Flame Module

Figure 6. Seat back section (A-A)

ADDITIONAL FEATURES OF HEAD AND
THORAX SRS SIDE AIR BAG SYSTEM

This newly designed and developed Head and Thorax

SRS Side Air Bag has been enlarged to provide additional
protection for the head area while still configured for the
thorax.
This new Head and thorax SRS Side Impact Air Bag
system, is mounted in the seat back to provide consistent
performance for the occupant in various fore/aft seat
positions which is the same as the current Thorax SRS
Side Impact Air Bag system.

BAG DESIGN

Bag shape

Combines thorax protection area and head
protection area to make a single air bag shape, providing a
larger occupant protection area by using a simple
configuration. The deployment shape of a bag was decided
from the range of occupant sizes.
Bag folding

The bag folding technique shortened the time for
full deployment.
The deployment shape is shown in Figure. 7.

Head protection area

Thorax protection area

Figure 7. Side view of the deployed bag



BAG DEPLOYMENT STEPS
Bag deployment Step.1

Start of the deployment (Signal is sent from control
unit to inflator).

Bag
- FR

Figure 8.Bag deployment Step.1(time Omsec)
Bag deployment Step.2

Bag deployment pressure tears seat seam and deploys
thorax protection area in the forward direction.

Figure .9 Bag deployment Step.2
Bag deployment Step.3

Gas deploys in the thorax area first, and then partial
gas transfers to the head area.

Figure 10. Bag deployment Step.3(after about 8msec)
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Bag deployment Step.4

Gas deploys in the head area.(full deployment)

‘Thorax protection
Area

Figure 11.Bag deployment Step.4(after about 20msec)

OCCUPANT PROTECTION PERFORMANCE
EVALUATION

Head Protection Performance

There are various kind of head protection
performance evaluation tests. We selected a pole impact
test as one of the evaluation tests. This test condition
simulates that a vehicle crashes into an utility pole or a
tree from the side of the vehicle and the occupant head hits
into the utility pole or the tree directly. This procedure is
under discussion at  ISO meetings.

Test results are shown in Figure 12. Deceleration
applied for the head was reduced to less than 1/10 of the
deceleration applied without Head and Thorax SRS Side
Impact Air Bag system.

(m/800"2)
i
g Less than 1/10 With Air Bag
3 {me— Without Alr Bag
3
Head impact [nto the pole
=

[ 10 20 30 40 50 60 (msec)
Time

Figure 12. Dummy head deceleration in side pole impact test.



Thorax Protection Performance

The Head and Thorax SRS Side Impact Air Bag
System reduces impact force by a maximum of 10~15%
in our laboratory testing.

OCCUPANT AIR
EVALUATION

BAG INTERACTION

Out of Position e Evaluation

To simulate possible O.0.P riding posture, some
0.0.P testing was conducted. Among various possible
0.0.P postures, three test conditions are evaluated as
possible high frequent postures and/or close to the air bag
module.

Child Seat Evaluation

In addition to O.0O.P test conditions, a child in a child
seat was evaluated.

g
i
f
o
o
¥
I
/

)

\
L X .r’ e <
\ \\ \{ C] \:\\ S }\
\ LS (o
L 7 /""’{-w' N )\ X,
“\_\jt,r‘"/ R i\ h

m Posturel (0.0.P)

m Posture.2 (0.0.P)
( Close to Door Trim 1)

(Close to Door Trim 2)

-

N
x** ~ae

>§ W,

\\

aPosture.3 (0.0P) m Posture.4 (Child seat)

(Close to side glas
Figure.13 O.0.P and child seat test posture(Dummy AC03)

Test Result

O.0.P and child seat test results are shown in
Figure.14~17.
As results show, dummy injury numbers are less than
IARV(Injury Assessment Reference Values).
The MVSS 208 criteria is used for the IARV.
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Figure 14. Dummy injury index in o.0.p and child seat test
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Figure.15 Dummy injury index in o.0.p and child seat test

(Neck ;My)
Neck Fz(Tension) Neck Fz(Compression)
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Figure.16 Dummy injury index in 0.0.p and child seat test
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Figure.17 Dummy injury index in o.0.p and child seat test
(Neck ;Fx)



ARM/AIR BAG INTERACTION EVALUATION

The test procedure for Arm interaction with side
impact airbag is being discussed in the ISO Working
Group. For one of the evaluation conditions, there is
the elbow on the window sill deployment test condition.

As a part of Airbag interaction evaluation test, the
elbow on the window sill condition test was conducted.
It was figured that current dummies are not adequate to
use for the arm evaluation at the arm and side impact air
bag interaction evaluation tests. Since the shoulder joints
of existing dummies are not well simulated like the actual
human being. This finding was reported to the ISO
Working Group meeting. To evaluate the Arm/Airbag
interaction, it was agreed to modify the shoulder joint to
get better simulation of actual human kinematics.

Human volunteer tests were conducted to evaluate

Arm/Airbag Interaction during our development.
Based on the reports from human volunteers, the feeling of
impact from Arm/Airbag Interaction is like -a slight slap
from the side of upper arm and no effect for shoulder and
bones. It was concluded that there is a very low risk of
arm injuries from Arm/Airbag Interaction.

CONCLUSION

Based on our development and evaluation of the
Head and Thorax SRS Side Impact Air Bag System, It was
introduced into the Japanese market in September 97, and
will be introduced into the US market in Fall of "98.

FUTURE OBJECTIVES

It is very important to evaluate the side effects of the
new restraint device before it is introduced into the market,
since there are not always adequate evaluation equipment
and measuring devices.

In this report the shoulder articulation was discussed,
it is desirable to find new necessary improvements and
share them among the experts to resolve. The shoulder
joint issue is well known among the experts and will be
moving towards the favorable solution.
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ABSTRACT

The NHTSA has very substantially extended its existing
Part 571 - FMVSS Standard No. 201 "Occupant Protection
in Interior Impact" [1]. This extension to the Standard
necessitates the development of energy-absorbing trimmings
for protection of vehicle occupants in the event of an impact
with components in the upper passenger compartment. The
publication describes the requirements of the Standard. This
paper illustrates development approaches, assisted by nume-
rical simulation, and investigates these experimentally. Dy-
namic protection systems for reducing the loads on vehicle
occupants in the event of an impact are not covered by this
publication.

INTRODUCTION

To Porsche, passive safety has always been a very im-
portant development aim. The company develops vehicles
for a worldwide market which therefore must comply with
all worldwide, legally stipulated standards and requirements
of the main consumer associations in respect of passive
safety in the event of frontal and side impacts, oblique and
rear impacts and rollovers.

Protection of the vehicle occupant in the passenger com-
partment is tested, amongst other things, to Standard
FMVSS 201. The amendment to the Standard, which came
into force in September 1995 and contains the technical
safety requirements in respect of all interior components in
the upper passenger compartment, represents an essential
extension. The law foresees a step-by-step compliance for
manufacturers of vehicles for the American market during
the period 1998 through to 2002. Alternatively, the manu-
facturer may opt for a one-step compliance of the law for all
vehicles which then comes into force in September 1999.

NEW REQUIREMENTS OF THE FMYVSS 201 - FMH
STANDARD

The extension of the Standard is aimed primarily at pro-
tecting the unbelted occupant in the event of an impact with
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components of the vehicle interior. If a vehicle occupant
hits an interior component at a speed of up to 24 km/h
owing to an accident, the head injury criterion HIC(d) must
not exceed a limit value of 1000.

Experimental validation of the requirements is perfor-
med with the aid of a modified Hybrid III free-motion head-
form (FMH). The development and validation tests are con-
ducted in the vehicle on a test stand designed specifically for
this test. The following areas of the vehicle interior must be
designed in such a manner as to comply with the head injury
criterion in the event of an impact of the occupant's head:

- pillar trimmings (A-, B-, C-pillar, rearmost pillar)
- front / rear header

- side rail

- seat belt anchorages, fittings, height-adjuster

- upper roof

- sliding door track

- overhead rollbar

- braces or stiffeners for convertibles

In these areas, different numbers of points are defined
which the FMH hits in free motion at a speed of 24 km/h.

Additional targets: Upper Roof (UR)
Figure 1. Targets of a conventional vehicle

The test headform must contact the target points with the
forehead impact zone within a target radius. The trajectory
vector of the FMH is defined by a vertical and horizontal
impact angle each. These impact angles are not defined



explicitly but as intervals. Consequently, the respective
components of the passenger compartment must comply
with the requirement criteria of the Standard within a wide
variety of test angles. These test angles are determined by
the various trajectory vectors of the free-motion headform.

Table 1.
Approach angle limits (only left side)
Target component Horizontal | Vertical
angle angle
ay, [°] ay [
Front header 180 0-50
Rear header 0 or 360 0-50
Side rail 270 0-50
Sliding door track 270 0-50
A-pillar 195 - 255 -5-50
B-pillar 195 - 345 -10-50
Other pillar 270 -10-50
Rearmost pillar 270 - 345 -10-50
Upper roof any 0-50
Rollbar 0or180 0-50
Brace or stiffener 90 or 270 0-50
Seat belt anchorage any 0-50
Vertical approach angle:
180°
dh
A \\
\ 90°
FMH-model /
g
Horizontal approach angle: o, 00

Figure 2. Approach angles of the FMH
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DEVELOPMENT CONCEPT FOR COMPLIANCE
WITH THE REQUIREMENTS

Developing measures to enhance vehicle safety necessi-
tates the cross-functional cooperation between various
technical departments. Styling, Bodyshell Design, Interior
Equipment, Numerical Simulation and Safety Testing were
included in the development for compliance with Standard
FMVSS 201. The measures are aimed at absorbing the kine-
tic energy of an impacting occupant head by providing for
suitable interior trimmings in such a manner that the resul-
ting head accelerations are reduced, thus lowering the head
injury criterion to less than 1000.

Basically, various problem-solving approaches are pos-
sible and combining them leads to suitable measures:

®  The interior must be designed such that "hard areas" are
out of reach or are grazed only tangentially.

B In potential impact areas, elements made of energy-ab-
sorbing materials must be used .

B Deformation elements optimized in respect of their ener-
gy absorption capacity must be used either alternatively
or in combination.

Numerical simulation

Numerical simulation is used to reduce the number of
possible design variants, optimize the selected variant and,
thus shorten the development time.

Impact and crash calculations are conducted at Porsche
using the LS-Dyna 3D Finite Element Program. The rele-
vant bodyshell structure, deformation elements and trim-
mings to be integrated are discretized as finite elements.
During simulation, a numerical idealized test headform is
launched at a test speed of 24 km/h. Its trajectory vector
ends at the target point on the interior structure.

The simulated accelerations at the center of gravity of
the test headform and the deformation of the structure are
evaluated, analogously to the test. The head injury criterion
HIC(d) is determined on the basis of the head accelerations.



Figure 3. Simulation of a head impact in the area of the
B-pillar area

The analysis of the dynamic deformation between the
interior trimming and the bodyshell during head contact is
of major advantage for design optimization. In the case of
complex surfaces with non-constant transitions in particu-
lar, the movement of the free-motion headform after initial
contact with the target point is influenced by the trajectory
vector. This leads to differing head accelerations and, thus,
also to differing HIC(d) values.

The concepts for the connection of trimmings, defor-
mation elements and the bodyshell can be varied during the
simulation process. Moreover, numerical simulation essen-
tial helps to establish the one test combination which -
among the wide variety of possible impacts on a target
point - leads to a maximum head injury criterion HIC(d).

Numerical simulation offers valuable assistance in im-
pact analysis.

Experimental investigation

Compliance with the legally prescribed requirements in
respect of impact protection is tested experimentally. Por-
sche uses a test bench which was developed specifically for
Standard FMVSS 201 - FMH.

The vehicle is prepared for the test and set up on the
test bench. With the aid of the test bench equipment, the
target points are calibrated and marked in a vehicle-specific
coordinate system, either in accordance with the respective
CAD data or on the basis of corresponding in-vehicle mea-
surements.
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Figure 4. FMH-test facility

Approximately 35 target points must be defined for a
conventional vehicle. The target points must be tested wit-
hin horizontal and vertical impact angles to be determined
which define the trajectory vector of the FMH. The Stan-
dard generally necessitates testing of a defined target point
at differing approach angles (see Figure 2). The number of
tests to be performed at a target point can be reduced by
analyzing the bodyshell structure, the package conditions
between trimming and bodyshell and the trimming contour
assuming a "worst-case" situation.

In the vehicle, the test arm is positioned according to the
trajectory vector in such a manner that the test headform at
the end of the arm moves through an unguided, free-moti-
on trajectory of at least 25 mm before its impact zone con-
tacts the target point. The test headform is accelerated
pneumatically. It consists of a modified Hybrid 11l dummy
head with no nose contour. The speed of the test headform
on the test bench can be set between 15 km/h and 40 km/h.
The legally prescribed speed is 24 km/h.

Figure 5. FMH-test



The tests are recorded with a high-speed video camera.
The following information is available directly after the im-
pact:

®  the position of initial contact point of the test headform
and trimming

®  the movement of the test head during contact

m  the visible deformation of the trimming surface during
contact

The evaluation of the measured results covers the impact
speed, the head injury criterion HIC(d), the accelerations in
the coordinate directions of the trajectory and the resultant
acceleration. In addition, the acceleration versus the intrusi-
on depth can be obtained to evaluate the energy absorption

quality.

Please refer to {2] for a detailed description of the test
procedure.

APPROACHES FOR COMPLIANCE WITH THE RE-
QUIREMENTS

Whilst having the same objectives, the requirements of
the extended Standard FMVSS 201 - FMH lead to different
measures for different interior components in the upper pas-
senger compartment. Owing to their high stiffnesses and
their shape, the pillars of the vehicle necessitate a greater
deformation depth than other interior components in the
event of a head impact. For reasons of active safety and in
order to provide the driver with as unrestricted a field of
view as possible, however, it is these components in par-
ticular which must retain their optically slim design.

Consequently, the task of Development is to minimize
the intrusion depths required for absorbing the kinetic ener-
gy, allowing for the biomechanical occupant parameters and
their limits. An 'ideal' deformation element consequently
features a square-wave characteristic of the stress versus the
intrusion depth. This response leads to a constant head acce-
leration and, thus, to a uniform deceleration of the occu-
pant’s head.

Deformation elements deviate from the ideal characteri-
stic of acceleration versus the intrusion depth. The quality
of the deformation elements is dependent on the design and
the material used. The table below provides an overview.
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Table 2.
Deformation elements of different designs

Designation Parameters

Shell structure material

material quality

shell thickness

|}
n
8 geometry / contour
(]
® joining methods

Rib structure material

shape
rib thickness

distribution

Honeycomb structure material
shape
cell sizes / radius

thickness

Besides the various designs, the material plays a crucial
role, too:

Table 3.
Material variants for a deformation element

Material Parameter

Plastic W quality

B fracture behaviour

Foam B quality

B density

Metal B material

® strength / quality

® joining behaviour

The selection of a suitable deformation element and mate-
rial depends on the packaging, the styling of the trimming,
the bodyshell structure and the position of the impact area.
The properties of certain designs and materials are listed be-
low. The results are based both on quasi-static tests and on
head-pendulum and impact tests.

Deformation elements made of foam can be designed and
built at low cost. The constancy and amount of stress is de-
pendent on the respective material. 70% max. of the



geometrical thickness of the deformation element can made
use of. Higher deformation leads to blocking of the foam
and, thus, to a progressively increasing stress response. The
parameters of foams are largely temperature-dependent.
The foam elements are attached to the trimming elements
for easy installation.

A -30°C RT 70°C
g
2 PUR-Foam
A -30°C
70°C
o~ RT
&
b EPP-Foam
Deformation

Figure 6. Stress/strain diagram of different foam materi-
als when subject to impact loading [source: Bayer AG]

Metallic deformation elements of shell design absorb
energy as a result of local and global deformation. The es-
sential design parameters are the cross-sectional contour and
the wall thickness of the shell element. For a given packa-
ging space, these parameters allow high energy absorption
with good efficiency at different impact angles. Attachment
of the deformation elements is generally complex and per-
formed on the bodyshell. The joining method is dependent
on the material and must be adapted to the deformation
areas.

When developing a new vehicle, energy-absorbing ele-
ments can be integrated in the bodyshell for enhanced stiff-
ness. This helps to further minimize the volume of the
energy-absorbing trimmings.

Metallic deformation elements consisting of thin layers
are also under investigation. The layers are keyed together.
The stress level is homogeneous up to a deformation of
90 % of the element thickness. The stress level can be adju-
sted as a function of the number of layers. Various concepts
are available for attaching the elements. The application of
the elements is restricted by packaging considerations and,
in particular, by the contour of the bodyshell, trimming and
required lead-throughs.

Honeycomb elements are available in various shapes and
materials. The honeycombs may consist of aluminum or
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plastic. The energy absorption results from local collapsing
of the honeycomb assembly. The stress/deformation beha-
vior can be adjusted as a function of the diameter resp. the
width and the thickness of the honeycombs. The elements
respond with a pronounced, virtually constant stress level
versus the intrusion depth. The folding zone at this level
amounts to approx. 80 % of the honeycomb height. Any
stress peaks occurring prior to the initial folding of the ho-
neycombs can be minimized by pre-compression. The appli-
cation of honeycomb elements is primarily restricted by
their shape and, as a result, by producibility considerations.
Honeycomb elements with variable honeycomb height can
be produced only at very high cost. Honeycomb elements
are well-suited for virtually flat areas. For one-dimensional-
ly curved surfaces over-expanding honeycombs, only can
be used within certain limits. The diagram below compares
some selected designs:

A
Foam
w3
o
&
A
.
»
Honeycomb
22}
723
[0
=]
5 ,f
>
Metallic layers
w
6
=
1

Y

Deformation

Quasistatic deformation

Figure 7. Standardized stress/deformation diagram for
various designs

Dynamic investigations of the absorption behavior of the
differing designs in an FMH test must always be conducted
complete with the trimming elements. Firstly, the trimming



element distributes the local loads applied to the target point
over the deformation element. Secondly, the shape of the
trimming contributes to the overall stiffness of the structure.

One example of an energy-absorption element is the
trimming of the rollbar in the Porsche Boxster. Being an
open-top vehicle, the Porsche Boxster features an effective

roll-over protection system consisting of a high-strength
windshield frame and a rollbar. The rigid rollbar made of
high-strength, stainless steel is manufactured using an inter-
nal high-pressure compression forming process. It's task is
to preserve the integrity of the passenger compartment in
rollover accidents. In order to further protect the occupant's
head in the event of an impact with the rollbar in a rear-end
crash, the rollbar has been provided with an energy-absor-
bing trimming.

Figure 9: Section through the rollbar and rollbar trim-
ming

The rollbar trimming consists of a metallic deformation
element which is provided with a TPO film or leather with
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expanded plastic on the side facing the occupants. The de-
formation element is mounted directly on the rollbar structu-
re.

During development, impact tests with the free-motion
headform were conducted at an impact speed of 24/h in or-
der to determine the dynamic energy absorption capacity.
The results of the FMH test are shown in the following dia-
grams:

Acceleration

Time

Figure 10: Rollbar: resultant head acceleration versus
time

By integrating the characteristic twice, it becomes pos-
sible to plot the resultant force versus the intrusion depth on
the basis of the head acceleration. The area beneath the cur-
ve corresponds to the absorbed kinetic energy of the head.

Force

4

Deformation

Figure 11. Force/deformation characteristic of the head

impact

The complete intrusion depth comprises the plastic defor-
mation of the deformation element, the compression in the
connecting area and the elastic deformation of the rolibar.



The diagram also shows a rapid increase in force and a vir-
tually constant force level in the dynamic test. The require-
ments of the extended Standard FMVSS 201 are met with
an adequate safety margin.

CONCLUSION

The extension of Standard FMVSS 201 for protection of
the vehicle occupants in the event of an impact with ele-
ments in the upper passenger compartment places stringent
requirements on interior components in terms of design and
energy absorption.

Consequently, the development must be performed in
close cooperation between the various technical depart-
ments, such as Packaging, Styling, Simulation, Equipment
and Safety Testing. The defined development targets are of-
ten conflicting ones. For improved energy-absorption and
occupant protection, the interior elements must be provided
with appropriate intrusion depths, this demand having a con-
siderable influence on styling. At the same time, the occu-
pants' field of view must be as unrestricted as possible and
their comfort of movement be preserved.

In the course of preliminary tests, it was possible to
acquire know-how as to the particular materials and designs
suitable for deformation elements in the interior. To begin
with, detailed design investigations and optimizations in the
upper passenger compartment are conducted with the aid of
numerical simulation. The results of this simulation are then
validated and further developed in dynamic vehicle tests on
the FMH test bench. These development efforts have led to
solutions which allow the additional packaging space requi-
red for compliance with the réquirements of the extended
Standard to be minimized.

In the future, one of the main tasks will be to integrate the
required intrusion depths into the packaging of existing
subassemblies as far as this is possible, and, at the same ti-
me, reduce the number and height of required deformation
elements.
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ABSTRACT

Diffuse brain injuries are very common in side
impacts, accounting for more than half of the injuries to
the head. These injuries are often sustained in less severe
side impacts. An English investigation has shown that
diffuse brain injuries often originate from interior
contacts, most frequently with the side window. They are
believed to be mainly caused by quick head rotational
motions.

This paper describes a test method using a Hybrid III
dummy head in a wire pendulum. The head impacts a
simulated side window or an inflatable device, called the
Inflatable Curtain (IC), in front of the window, at different
speeds, and at different impact angles. The inflated IC has
a thickness of around 70 mm and an internal (over)
pressure of 1.5 bar. The head was instrumented with a
three axis accelerometer as well as an angular velocity
sensor measuring about the vertical (z) axis. The angular
acceleration was calculated. The head impact speeds
ranged up to 7 m/s, a speed at which the Inflatable Curtain
barely bottoms out. The recorded data for linear
acceleration, angular acceleration and angular velocity
were compared with corresponding threshold values found
in the literature.

It was concluded that the Inflatable Curtain has the
potential to substantially decrease the risk of sustaining
diffuse brain injuries. The IC reduced the maximum linear
acceleration and HIC up to 70% and the peak angular
acceleration up to 70%, depending on the contact angle
between the head and the IC. The peak angular velocity
was reduced up to 30%.

INTRODUCTION

Head injuries can be divided into skull fractures, focal
brain injuries and diffuse brain injuries. The latter type is
the most common. Gennarelli et al. (1987) found that over
half of the hospitalized patients for head injuries in the
United States suffered from diffuse brain injuries. One
third of the injuries were fatal. Morris et al. (1993) found
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in another study that 60% of AIS 2+ head injuries in side
impacts were of the diffuse brain injury type.

The diffuse brain injuries originate mainly from
contact with the interior of the car, especially with the side
window (Morris et al.,, 1993). It was found in the same
survey that diffuse brain injuries of AIS2+ level occurred
in less severe side collisions with a mean delta-velocity of
32 km/h, than all head injuries of AIS2+ level, with a
mean delta-velocity of 43 km/h.

Diffuse brain injuries are believed to be caused by
quick rotational motions resulting in critical strains of the
axons. These injuries are known as diffuse axonal injuries
(DAI). The injuries can be widespread in the brain without
any structural disruptions (Gennarelli et al., 1989).

According to a study by DiMasi et al., (1995) a pure
translational acceleration of the head will induce very little
strain, while a pure rotational acceleration will induce
considerably more strain. A combination of translational
and rotational accelerations will induce more strain than
the rotational acceleration alone. Viano (1997) found
similar high strains due to pure rotational acceleration.
However, he also found greater strains with pure
translational acceleration than DiMasi.

The diffuse brain injuries can cause loss of
consciousness during a short or longer period of time.
When regaining consciousness there may be irreversible
injuries to the axons with loss of physical functions as well
as changes of personality (Aldman, 1996).

Injury assessment

The severity and type of diffuse brain damage
appears to depend on the magnitude, the duration and the
onset rate of the angular acceleration. A short duration of
rotational acceleration will require a very high magnitude
in order to cause damage to the brain tissue. Conversely,
increased acceleration duration can cause brain damage at
lower rotational accelerations. When the duration and the
amplitude of the acceleration increase, the strain will
occur deeper into the brain and cause axonal damage
{Gennarelli, 1987).



Margulies et al. (1992) proposed tolerance levels for
diffuse brain injuries in lateral rotational acceleration
motions (acceleration about the x-axis). The tolerance is
described by the peak angular acceleration (sinewave) and
the peak change in angular velocity, which can be reached
before a critical level of strain is exceeded. The peak
change in angular velocity is the maximum of the
integration of the angular acceleration. The strain is
linearly increasing with the load and exponentially
increasing with the brain size (Margulies ef al, 1989).
Concussion can be compared with a strain level of 0.05,
while tissue disruption occurs at a strain level of 0.2

(Gennarelli et al., 1989).

Peak rotational acceleration {rad/s*s}
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Figure 1. The graphs show the DAI (Diffuse Axonal
Injury) thresholds for various strains (Fig. 1a) and for
various brain masses (Fig. 1b); peak rotational
acceleration as function of peak change in rotational
velocity. Redrawn from Margulies et al., 1992.
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Gennarelli et al. (1987) performed a study concerning
the directional dependence of DAL They concluded that
non-centroidal rotation about the longitudinal horizontal
x-axis (center of rotation in the lower cervical spine)
resulted in the longest traumatic coma. The centroidal
rotation about the vertical z-axis was the second worst and
non-centroidal rotation about the lateral horizontal y-axis
resulted in the shortest traumatic coma (center of rotation
in the lower cervical spine).

The Head Injury Criterion (HIC) is based on linear
acceleration of the head and can only predict injuries due
to forces which are directed through the center of gravity
of the head. HIC does not take into account the rotational
motion of the head (Gennarelli, 1987).

The aim of this study was to determine the influence
the Inflatable Curtain has on the head rotational motion
about the vertical z-axis and on the linear acceleration in
angled head to side window impacts.

METHODS
Test setup

The test method was based on a Hybrid III dummy
head in a wire pendulum. The head was attached above the
center of gravity and it was permitted free rotation about
the vertical z-axis.

No neck muscle activity was simulated. In these tests,
the maximum angular acceleration was reached within
25 ms and the maximum angular velocity within 35 ms.
The reaction time of the muscles are normally longer, up
to 120 ms (van der Horst ef al., 1997). The head was
turned up to 30° from its normal forward direction. For a
human being, the head is moving freely the first 479, if the
muscles in the neck are not strained (White et al., 1978).

The Inflatable Curtain was mounted on a fixture. A
3 mm thick aluminum plate was attached to the fixture, in
order to simulate a side window (Figure 2). The aluminum
plate was perpendicular to the ground. A rubber strip was
placed between the aluminum plate and the fixture, in
order to try to simulate the conditions for a car side
window.

2y

Figure 2. The test rig.



The side window had an angle a related to a reference
plane (Figure 3). The angle (a) was 30° in most tests, but
an angle of 45° was also tested. The 30° angle represents
the head motion for the driver in a 10 o’clock side impact
and the same for the passengers head in a 2 o’clock side
impact.

reference

plane
- —————

Figure 3. The test setup from above.

The angle 8 was defined as the angle between the side
window and the center line (x-axis) of the head, through
the center of gravity and the nose. The angle § was zero,
when the head was parallel with the side window
(Figure 3). In this position, it should be noticed that the
normal force was not directed through the center of
gravity, since this point was located slightly closer to the
forehead. The angle f§ was altered in some of the tests
between -30° and +30° (Figure 4).

__—>
|
B
a
reference reference
plane i plane
. <—__

Figure 4. The figure shows how the angle § between
the head and the “window” was altered in the tests.

Instrumentation - The head was instrumented with
an angular velocity sensor (ARS-01 made by Ata Sensors,
USA) and a standard triaxial accelerometer at the center of
gravity. The signals were filtered with CFC1000. The
angular acceleration was calculated and filtered with
CFC180.

A film video camera (KODAK EM, 1000 Hz) was
mounted above the head.

The Inflatable Curtain - The IC (Figure 2) had a
volume of 12 1 and a thickness of 70 mm. It was inflated
with compressed air. The internal (over) pressure was
1.5 bar and measured in the front part of the filling duct.

There was no ventilation of the IC except for a small
amount of air leaking through the fabric.
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The IC had an outer silicon coating. In some tests talc
was applied to the surface to study the effect of the
friction.

Procedure

The head was dropped from an elevated level, in
order to reach a specific velocity (v) at the time of the
impact to the “window”. The velocity was 3 m/s, 5 m/s or
7 m/s. The velocity of 7 m/s can be equivalent to the
impact speed of the head into a fixed object in a 30 km/h
car-to-pole/tree collision.

Tests were performed both with and without the IC
inside the “window”. The influence of the friction of the
fabric at various levels of pressure was also tested.

When the head form contacted the IC, there was no
simulated lateral bending of the neck. The vertical axis of
the head was parallel with simulated window.

RESULTS
Rotational motions

The use of the IC reduced the peak angular
acceleration by about 60-70% (Figure 5). The peak
angular velocity was reduced less. The reduction being
between 2-30% depending on the angle between the head
and the IC.

Angular acceleration (rad/s?)
12 000

= NoIC5
10 000 ms
- IC5m/s
8 000 - NOIC7
m/s
6000 « IC, Trs
4000 -a- DAI
threshold
2000 strain
level
0 0.05

0 10 20 30 40 50 60
Angular velocity (rad/s)

Figure 5. The angular acceleration as function of the
angular velocity (simultaneous values) and the peak
values. The angle (f) between the head and the IC was
30° The DAI threshold curve (0.05 strain level) is
redrawn from Margulies ef al. (1992).

Figure 5 shows simultaneous values of the angular
acceleration and the angular velocity. The results will be
presented as peak angular acceleration and peak angular
velocity. It should be noticed that the two peaks do not
occur at the same time.



When the impact velocity was increased from 5 m/s
to 7 mys, the peak angular velocity increased 5-10% and
the peak angular acceleration 15-25% depending on the
angle S between the head and the simulated window, with
or without the IC (Figure 6).
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Peak angular acceleration (rad/s*s)

0 | - 1 1
-10 0 10 20 30
Angle between head and "window" (degrees)
O =NolC,5m/s
@®=IC,5m/s
+ =NolIC,7m/s
x =1C,7 m/s

Figure 6. The peak angular velocity and the peak
angular acceleration as a function of the angle (§)
between the head and the “window”, with and without
IC, at different impact velocities. The angle (a) between
the IC and the reference plan was 30°.
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The angle (a) between the reference plane and the
simulated side window were tested at 30° and 45°, with
the head parallel to the reference plane. Without the IC,
the angular acceleration about the z-axis decreased about
35% when the angle increased from 30° to 45° angle,
independent of the velocity of the head. With IC, the
angular acceleration increased only about 5%.

The angle (f) between the head and the “window”
was varied between -30° and +30° (see Figure 4). The
minimum values were reached at an angle of -20°. That
was the angle at which the normal contact force was
directed through the center of gravity. The angular
acceleration and the velocity both increased with the
increase of the angle f (Figure 7).
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Figure 7. The absolute value of the peak angular
velocity and peak angular acceleration as function of
the angle () between the head and the "window”, at a
contact velocity of 5 m/s.

The angular acceleration, however, did not increase
in the same way with the IC as without the IC, when the
angle between the head and the “window” was increased



(Figure 7). At -20° the peak angular acceleration and
velocity were almost zero, when there was no IC.

Linear motions

The IC reduced the linear acceleration up to 70%
(Figure 8).
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Figure 8. The linear acceleration and the HIC as

function of the angle (f) between the head and the
“window”.

The HIC shows the same characteristic as the linear
acceleration, with a reduction up to 70%. The HIC
increased as the angle f between the head and the IC
decreased (Figure 8). The increase was much smaller with
the IC.
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DISCUSSION
Rotational motions

Inflatable Curtain - The head angular acceleration
was reduced due to the relative “soft” spring
characteristics of the IC compared to the “stiff” side
window. The angular velocity was mainly influenced by
the damping of the IC, which was limited at these impact
velocities and impact angles. Moreover, the duration of
the rotation was longer with the IC than without, which
gave the head more time to reach the angular velocity,
despite the lower rotational acceleration.

Figure 5 shows that the risk of diffuse brain injury
was mainly reduced by the reduction of the angular
acceleration due to the IC.

Angle between the IC and the reference plane -
The angular acceleration decreased as the angle (a)
increased from 30° to 45°. The angle a had an influence
on the head velocity component perpendicular to the IC.
The velocity v, thus decreased as the angle a increased
(Figure 9), which explains the reduction of the angular
acceleration.

Vo a a= 300 or 450

Vy=cosg * Vo

Figure 9. Test conditions.

The peak angular velocity was marginally
affected by the change of the angle a from 30° to 45°. The
limited energy absorption of the IC in these test conditions
means that the kinetic energy of the head form before the
impact is transformed to rotational energy after the impact.

Angle between the head and the IC - The torque,
the normal contact force times the distance between the
contact point and the head center of gravity point,
increased with the angle f. This directly increased the
angular acceleration. The normal forces were obviously
larger than the friction forces.

When the head first came in contact with the IC, it
penetrated the IC a couple of millimeters without any
large force (15% of the maximum force). The force then
increased and the head started to rotate. The distance
between the point of contact and the center of gravity,
when the head had an angle § of 30° to the side window,
was about 7 cm. The effective distance, however,
decreased, when the head started to compress the IC. This




can explain why the angular acceleration did not vary so
much for different § angles with the IC as without the IC.

Pressure of IC - A range of different pressures were
tested (between 0.5 bar and 2.0 bar). The angular peak
acceleration and velocity decreased both with a reduction
in pressure (Figure 10).

Peak angular velocity (rad/s) Peak angular acceleration (rad/sz)
60 5 000

ot ,_/./—v"",%-' * 4000 .

40 3000 =

% 2000 )

20

10 1000

0
060 05 10 15 20 25

pressure (bar) pressure (bar)

Figure 10. Influence of the pressure of the IC. The
angle (§) between head and IC was kept to 30°. The
head impact velocity was 5 m/s.

The angular acceleration and angular velocity
decreased by about 20%, when the pressure was decreased
75% (from 2.0 bar to 0.5 bar). In order to avoid a
bottoming out of the IC at higher impact velocities
(7 m/s), the pressure needs to be about 1.5 bar.

Friction - Some additional tests were performed with
an IC applied with talc on the surface in order to reduce
the friction. The reduction in friction was approximately
80%, from 3.1 to 0.7, when measuring the friction
between the fabric and a piece of glass.

The peak angular acceleration increased only between
5% and 10% with the higher friction, independent of the
angle between the head and the IC. The angular velocity
showed the same small dependency on the friction as the
angular acceleration.

Linear motions

The maximum HIC and the maximum linear
acceleration were reached, when the angular acceleration
and angular velocity had their lowest values. The linear
acceleration had its maximum, when the contact force was
directed through the center of gravity, which at the same
time resulted in the lowest angular acceleration. Vice
versa, when the contact point was applied further away
from the center of gravity, the linear acceleration
decreased and the rotational acceleration increased
(Figure 7 and 8).

DiMasi et al. (1995) noticed a combined effect
between translational and rotational accelerations, when
the translational acceleration resulted in a HIC between
800 and 900. In these tests the maximum HIC value was
less than 400. This combined effect could not be estimated
from these test results. However, it is possible that the
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strain effects in a human brain at these levels of linear
acceleration are small.

CONCLUSIONS

The study has shown that the Inflatable Curtain
reduces the angular acceleration as well as the angular
velocity of the head in angled head to side window
impacts. There was a 2-30% reduction of the peak angular
velocity and a 60-70% reduction of the peak angular
acceleration in the tests performed. The linear acceleration
was reduced up to 70%. It is therefore believed that the IC
has the potential to substantially reduce the risk of
sustaining diffuse brain injuries in side impacts.

The maximum angular acceleration and angular
velocity were both dependent on the perpendicular impact
velocity of the head to the side window/IC.

The angle between the head and the IC/window had
an influence on both the angular acceleration and angular
velocity. However, the influence of the angle was much
larger without IC than with.
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ABSTRACT

Based on a long recognized need, the National Highway
Traffic Safety Administration (NHTSA) has begun to
reexamine the potential for international harmonization of
side impact requirements. To thisend NHTSA, as directed by
the U. S. Congress, has recently submitted a report to the
Congress on the agency plans for achieving harmonization of
the U. S. and European side impact regulations. The first
phase of this plan involves crash testing vehicles compliant to
FMVSS 214 to the European Union side impact directive
96/27/EC. This paper presents the results to date of this
research. The level of safety performance of the vehicles
based on the injury measures of the European and U.S. side
impact regulations is assessed.

INTRODUCTION

The National Highway Traffic Safety Administration
(NHTSA) has long recognized the need for international
harmonization of side impact requirements and the potential
of added safety benefits resulting from such harmonization.
Although the U.S. and EU side impact regulations ideally
address the same safety problem, they differ in test procedures,
barriers, dummies, and injury criteria. Recently, the U.S.
Congress directed NHTSA to study the differences between
the U.S. and proposed European side impact regulations and
to develop a plan for achieving harmonization of these
regulations.  Also, manufacturers believe that these
differences lead to different vehicle designs, thus posing
undue financial burdens in terms of dual development, testing,
manufacturing and distribution of vehicles in various markets.

NHTSA submitted a side impact harmonization plan to the
U.S. Congress in April of 1997 [1]. The first phase of the
plan is an attempt at assessing whether the safety
performance of vehicles is functionally equivalent relative to
the European regulation (EU Directive 96/27/EC) and the
Federal Motor Vehicle Safety Standard (FMVSS) 214. The
Functional Equivalence Assessment Process (Appendix A)
was developed by the U. S. and Australia in coordination with
foreign governments, industry and consumer groups. NHTSA
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hasrecently published a final rule institutionalizing the process
[39]. The final rule sets forth the process that the agency will
use in comparing U.S. and foreign vehicle safety standards and
in determining appropriate rulemaking response, if any. The
rule reaffirms NHTSA’s policy of actively identifying and
adopting those foreign vehicle safety standards that require
significantly higher levels of safety performance than the
counterpart U. S. standards. The rule also outlines the
agency’s policy in the case where the comparison indicates
that the foreign standard’s safety benefits are approximately
equal to those of a counterpart U. S. standard.

To begin gathering the data necessary to make the
functional equivalence assessment, NHTS A initiated a research
program by testing eight U.S. production FMVSS 214
compliant vehicles to the EU Directive 96/27/EC requirement.
This paper focuses on the results of the testing in terms of the
level of safety performance of the vehicles for both the U.S.
and EU regulations.

Current U.S. and European Side Impact Standards

The U.S. regulation on side impact is FMVSS 214; Side
Impact Protection [2] addressing thoracic and pelvic fatalities
and injuries in vehicle-to-vehicle crashes. The dynamic
requirement, or crash test portion of this standard was added
in October of 1990. It was phased-in beginning with 1994
model year (MY) cars such that all cars by the 1997 MY had
to meet the requirements. Starting with the 1999 MY, trucks,
buses, and multipurpose passenger vehicles under 2,721 kg
(6000 Ibs) must meet the dynamic part of this standard [3].

The European Union (EU) side impact regulation, EU
Directive 96/27/EC was approved in October of 1996. It
applies to new and redesigned M1 and N1 vehicle types
beginning with the 1999 MY. M1 vehicles are those with a
capacity of nine or less occupants and would include passenger
cars, multipurpose passenger vehicles, and mini buses. N1
vehicles are those with the capacity of carrying up to 3.5 metric
tons, e.g. vans and chassis cabs. Vehicles with R-point of
lowest seat >700 mm are excluded. All M1 and N1 vehicles
starting in the 2004 MY must meet this regulation.



The test procedures of both regulations are similar in that
a stationary test vehicle is struck with a moving deformable
barrier (MDB). These dynamic test procedures focus on the
measurement of anthropomorphic test dummy responses to
compute injury criteria. However, the two regulations use
different test procedures, barriers, dummies, and injury
criteria. Figures 1 and 2 show a schematic of the test setup for
the U.S. and EU regulations. Table 1 compares the relevant
crash test parameters such as impact direction, impact velocity
and barrier face dimensions.
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target vehicle. The lateral striking position is aligned with the
occupant seating position rather than the vehicle wheelbase.
The EU MDB is centered about the R-point or seating
reference point defined as the H-pt for lowest and rearmost
driving seat position.

@539kmh 7,
Figure 1. FMVSS 214 Side Impact Test Configuration.

The FMVSS 214 dynamic test simulates the 90 degree
impact of a striking vehicle traveling 48.3 km/h into a target
vehicle traveling 24.2 km/h. This is achieved by a moving
deformable barrier with all wheels rotated 27 degrees (crab
angle) from the longitudinal axis, impacting a stationary test
vehicle with a 54 kmv/h closing speed. For a typical passenger
car, the left edge of the FMVSS 214 MDB (214MDB) is
940 mm forward of the mid point of the struck vehicle wheel
base.

In the EU 96/27/EC dynamic test, the European MDB
(EUMDB) impacts the target vehicle at 50 km/h and 90
degrees with no crab angle. This differs from FMVSS 214 in
that no attempt is made at simulating the movement of the
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Table 1.

Figure 2. EU 96/27/EC Side Impact Test Configuration.

Crash Test Parameter Comparison
EU 96/27/EC

FMVSS 214

MDB Mass

950 kg

1367 kg

Velocity Vector

50 kph/90°

54 kph/63°

Impact Point

Centered on
R-point*

940 mm from
wheelbase center

Barrier Face

Ground Height

300 mm

280 mm
Bumper 330 mm

Face Width

1500 mm

1676 mm

Barrier
Material

Performance
Defined

*same as seating reference point

Aluminum

Honeycomb




FMVSS 214 and EU 96/27/EC Movable Barriers - The
dimensions and material characteristics of the 214MDB
face are shown in Figure 3. The aluminum honeycomb of
the barrier face is specified by design. The bottom edge of
the MDB is 280 mm from the ground. The protruding
portion of the barrier simulating a bumper is 330 mm from
the ground. The 214MDB has a total mass of 1367 kg
initially derived from the weights of passenger cars and
lights trucks in the U.S. fleet with a adjustment made
assuming a downward trend in vehicle mass due to fuel
economy needs [4, pg lIIA-6]. The dimensions of the
EUMDB face are given in Figure 4. The European barrier
face is segmented into six blocks with force deflection
performance characteristics specified in the EU regulation.
The lower blocks are stiffer than the top blocks and the
center blocks are stiffer than the outboard elements. The
EUMDB face is about 20% smaller than the 214MDB in
terms of face area. It is also much softer than the 214MDB
face on the blocks closest to the sides. The bottom edge is
the most forward part of the European MDB and is 300 mm
from the ground. The European barrier has a mass of 950
kg, 40% less then the mass for the U.S. barrier.
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Figure 3. FMVSS 214 Side Impact Deformable Barrier
Face.

1729

<A <A
1 T
250 5 | 4 | 6
| : \
I
250 1 | 2 | 3 | Bhy
L N | 1
500 | 500 | 500
300 |
«— -«
<A A  GROUNDLEVEL
—> F—‘GO
£ S
B ECTION A-A
SIRAN
500
GROUND LEVEL
{ NOTE: Length dimensions in millimeters

Figure 4. EU 96/27/EC Side Impact Deformable
Barrier Face.

FMVSS 214 and EU 96/27/EC Dummies _and Injury
Criteria - In both regulations, successful test performance is
determined by dummy injury criteria. However, the
regulation differ in both the test dummy and injury criteria.
Figure 5 is a schematic of the two side impact dummies, the
U.S. side impact dummy (SID) used in FMVSS 214 and the
EU dummy EUROSID-1 used in Directive 96/27/EC.

Although both dummies ideally represent a 50™
percentile side impact anthropomorphic device, they are
based on different designs and have different measurement
capabilities. In particular, Eurosid-1 has an articulating half
arm, while the response of the arm is folded into the design
of the thorax in SID. FMVSS 214 requires that a SID be
placed in both the front and rear seats of the test vehicle.
The EU Directive requires that only one EUROSID-1 be
placed in the front seat. The injury criteria for each
regulation, given in Table 2, relate to the measurement
capabilities of the dummy used.
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Figure 5 Schematic of Side Impact Dummies of FMVSS
214 and EU 96/27/EC

Table 2.
Test Dummy Inju

EUROSID-1

Criteria

HIC - 1000

Rib Deflection < 42 mm TTI<850r90G

V*C < 1 m/s

Abdominal Force < 2.5
KN

Pelvic Accel. < 130 G

Pubic Symphysis Force
< 6 KN

SID was designed to measure only the acceleration of the
ribs, spine and pelvis to compute thoracic and pelvic injury
criteria [20]. The rib and spine accelerations are combined
into a single metric called the Thoracic Trauma Index
(TTI(d)) which has an 85g limit for 4-door vehicles and a 90g
limit for 2-door vehicles. The pelvic acceleration has a 130g
limit.

EUROSID-1 has additional measurement capabilities than
SID, including force and displacement as well as acceleration
based readings (5]. The EU regulation places limits on five
dummy criteria to determine vehicle performance. The head
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protection criteria (HPC) is derived from head acceleration
over a head contact time duration and must remain below
1000. A rib deflection criterion (RDC) allows a maximum of
42 mm of deflection in the thorax. A soft tissue viscous
criterion (V*C), computed from combined rib deflection and
velocity, is to be reported with a proposed limit of 1 m/s. It is
worth noting that for the first two years in which EU 96/27/EC
becomes effective, V*¥C values are to reported but not used as
a pass/fail criterion . A review of the EU directive is planned
in the year 2000 during which the status of V*C as a required
injury criteria will be decided. The abdominal peak force
(APF) is limited to 2.5 KN. Finally, the pubic symphysis peak
force (PSPF), which is in the pelvic region, must be less than
6 kN,

VEHICLE MATRIX

Table 3 lists the U.S. production vehicles that were tested
to the EU 96/27/EC requirements. The vehicles were identical
in design to vehicles tested to FMVSS 214 in the NHTSA
compliance test program. The matrix included four 4-door and
four 2-door passenger cars.

Table 3.
FMVSS 214/ EU 96/27/E.C Test Matrix
Vehicle FMVSS Side Prod-
214 test | NCAP | uction

1996 Ford 4-Dr 1996 Yes 539K
Taurus*
1995 Volvo 850 SwW 1995 No 63K
1997 Nissan 4-Dr 1996 Yes 72K
Sentra
1997 Hyundai 4-Dr 1996 Yes 15K
Sonata
1997 Ford 2-Dr 1996 No 170K
Mustang
1997 Lexus 2-Dr 1995 No 13K
SC300
1995 Geo Metro 2-Dr 1996 No 58K
1997 Mitsubishi 2-Dr 1996 No 111K
Eclipse

*The EU test for the 1996 Taurus was performed by Ford
Motor Company.



The selection criteria for the vehicles in order of importance
were the following:

1. FMVSS 214 test results were used to provide a range of
performance from marginal to good performers within the
set of 4-Dr vehicles and correspondingly within the set of
2-Dr vehicles.

2. Vehicles to be tested in the side impact New Car
Assessment Program (NCAP) were included as much as
possible in order to provide an additional comparative
data set at a higher performance level for the current test
program and for possible future ECE 95 testing at a
higher performance level.

3. Vehicles built or sold by all U. S. manufacturers or their
subsidiaries would be represented, and similarly, to the
extent possible, for those built or sold by foreign
manufacturers.

4. The highest production vehicles would be represented.

EU 96/27/EC TESTS SETUP

With the exception of placing a Eurosid-1 dummy in the
rear outboard position, the procedures of the EU 96/27/EC
Directive were followed in performing the European side
impact tests of the U.S. production vehicles. In addition,
experts from TNO, Netherlands, provided training on the
latest dummy seating practices. They also provided guidance
on common EU 96/2/7EC test set up practices, especially in
arcas where the EU directive is not specific. Although the
seat track position for the front dummy is not specified in the
EU Directive, the Eurosid-1 in the driver position was seated
in the mid-track position to provide the best comparison with
FMVSS 214, In addition, comparison checks of the test
vehicle options, test weight and attitude, and dummy H-points
and lateral clearances between the FMVSS 214 and EU test
setups were performed. This was done to ensure minimum
differences in the vehicles, dummy positioning, and test setups
for the comparison testing.

The Plascore layered honeycomb construction barrier face,
was used for the EU Movable Deformable Barrier (EUMDB)
clements. The choice of barrier face was based on a recent
evaluation of barrier faces performed through the
International Standards Organizations (ISO) working group
on Car Collision Test Procedures [6]. The evaluation
compared the characteristics of the Cellbond/TRL, Plascore,
and AFL/UTAC EUMBD faces and indicated that the
Plascore face best fits the force performance corridors
specified by EU 96/27/EC. It has been established by various
researchers that different EUMDB face designs lead to
significantly different vehicle performance results, for both the
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occupant responses and vehicle intrusion profiles [7,8]. As
such, the recently developed honeycomb face from Plascore
was chosen to ensure the best currently available fit to EUMDB
performance requirements.

In both the 2-Dr Mustang and Eclispe, there was no room
to fit a rear Eurosid-1 dummy in the EU tests. In the FMVSS
214 compliance tests, there was no room to fit a rear SID only
in the Eclipse. It is worth noting that the Eurosid-1 dummy
has a slightly higher seated height specified at 904 + 7 mm
versus 899 £10 mm for the SID. On the other hand the SID
has a wider hip width specified at 373 %18 mm versus 355 £5
mm for the Eurosid-1.

Eurosid-1 Calibration Issues - Problems in certification of
Eurosid-1 lumbar spine parts were encountered in the set up
for the EU vehicle testing. As such, a round robin calibration
of three new lumbar spines was performed at three U.S. sites.
The results are listed in Appendix A. The base angle output
requirements were only met about 50% of the time for two of
the parts although the lumbar pendulum pulse requirements
were typically met. The differences in base angle outputs were
small and consistent suggesting that the new parts were similar
in construction but the calibration corridors may be too narrow.
The results were presented to TNO and ISO/TC22/SC12/WG5
working group, Anthropomorphic Test Devices, in June of
1997. TNO has initiated a round robin research activity to
address this lumbar spine calibration issue.

COMPARISON OF OCCUPANT RESPONSES

The first level of comparison of results was based on the
normalized injury criteria of each regulation. Tables 4. and 5.
list the computed injury criteria for the FMVSS 214 and EU
96/27/EC tests of the eight vehicles for both the driver and rear
dummies. In general, the basis of the comparisons made below
was to normalize the computed injury values by the limit of
the criteria specified by each regulation. For example, the
TTI(d) was normalized by 85 for the 4-Dr vehicles and by 90
for the 2-Dr vehicles, and RDC was normalized by 42 mm.
Overall, the results indicate a higher severity for the driver
dummy in the EU tests for the RDC thoracic criterion when
compared to the TTI(d) in the FMVSS 214 tests. No trend is
scen for V*C versus TTI(d). The results also indicate possibly
a higher severity for the driver dummy in the 4-Dr vehicles for
PelvicG in the FMVSS 214 tests when compared to the PSPF
pelvic criterion in the EU tests. This apparent trend is
reversed for the driver dummy in the 2-Dr vehicles where a
lower severity is indicated for PelvicG when compared to
PSPF,



Table 4.
FMYVSS 214 and EU 96/27/EC Results (Driver)

TTI(d) |Pelvic (g RDC Flat Tops V*C PSPF (kN) | APF (kN) HPC Tstart | Tend | HIC36
85/90 | 130 | 42 mm 1.00 5.0 25 1000 |(ms) | (ms)
1997 Ford Mustang 2-Dr 56 65 39.8 __yes 0.69 4.827 2.295 334 58.9 62.1 85.3
1997 Lexus SC300 2-Dr 63 78 28.1 nd 0.26 2.437 1.409 249 63.5 118.3 44.1
1995 Geo Metro 2-DR 80 84 43.9 __yes 0.65 4.158 1.518 nc 971
1997 Mitsubishi Eclipse 2-Dr 82 86 48.6 __yes 1.04 4.097 1.429 nc 94.9
1995 Volvo 850 SW 49 58 29.9 __yes 0.38 1.686 0.719 ne 23.5
1996 Ford Taurus 4-Dr 50 61 40.0 ___yes 0.94 2.196 1.131 67 116.1 | 145.65 90.8
1997 Nissan Sentra 4-Dr 67 94 49.0 yes 1.32 4.531 1.029 231.9 42.2 48 389
1997 Hyundai Sonata 4-Dr 70 102 29.7 yes 0.60 3.490 1.369 nc 177.6
* Numbers in bold are in excess of the criterion.
nc= no contact
nd= not determined
Table 5.
FMVSS 214 and EU 96/27/EC Test Results (Rear Passenger)
TTI(d) |Pelvic (g)] RDC vC PSPF (kN) | APF (kN) HPC Tstart | Tend | HIC36
85/90 130 42 mm 1.00 6.0 25 1000 {ms) (ms)
1997 Lexus SC300 2-Dr 39 50 10.4 0.04 2.419 0.207 nc 308.6
1995 Geo Metro 2-Dr 69 100 335 0.23 3.725 0.110 365.4 38.2 96.7 365.4
1997 Nissan Sentra 4-Dr 51 74 11.4 0.04 5.036 0.576 2349 61.6 141.6 252
1995 Volvo 850 SW 51 49 6.7 o.M 3.098 0.742 234 58.3 195.4 234
1996 Ford Taurus 4-Dr 57 65 23.6 0.14 1.171 0.594 nc 160.1
1997 Hyundai Sonata 4-Dr 60 102 175 0.08 0.673 0.317 nd 188.6

The results also indicate a much lower severity in the EU
tests for the rear passenger dummy when both EU thoracic
criteria are compared to TTI(d) in the FMVSS 214 tests. No
trend is apparent when PSPF was compared against PelvicG for
the rear passenger dummy,

Thoracic Injury Criteria

With the caveat that the Eurosid-1 rib deflections which
form the basis for computing RDC and V*C are questionable
(Refer to section “Flat-Top”Anomalics in Eurosid-1 Rib
Deflection Responses below), the following observations are
made. For the 4-Dr vehicles, the Nissan Sentra driver dummy,
exceeded the RDC and V*C criteria (See Figure 6). For the 2-
Dr vehicles driver dummy, the Geo Metro exceeded RDC and
the Mitsubishi Eclipse exceeded both RDC and V*C,

With the exception of the Sonata and the Lexus SC300, the
normalized TTI(d) was on the average 26.8% lower than RDC
for the driver dummy. For the Sonata and the Lexus, TTI(d)
was 12% and 3% higher than RDC. As to V*C, the results
were more of a mismatch, with normalized TTI(d) on the
average 27.1% lower than V*C for the driver dummy for four
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of the vehicles and higher by 27.5% for the remaining four
vehicles. There were no apparent trends in these differences
for either the 2-Dr or 4-Dr sets of vehicles.

214 vs EU Driver Thoraclc Injury Criteria
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214 vs EU Rear Occupant Thoracic Injury Criteria

[ TTI(d) B Max Rib Defl O Max V"G

o o
® ©

s
~

=)
P

o
)

PelvicG was on the average greater than PSPF by 16% for
three of the four vehicles. The exception was the Sentra, in
which PelvicG was less than PSPF by 3%. In contrast, for the
2-Dr vehicles, PelvicG was on the average 12% lower than
PSPF for three of the four vehicles for the driver dummy. The
exception was the SC300, in which PelvicG was larger than
PSPF by 19%.
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Figure 7.

The average normalized thoracic criteria for the 4-Dr
vehicles and the 2-Dr vehicles are listed in Table 6. For the
driver dummy, the average normalized TTI(d) and RDC are
higher for the 2-Dr vehicles. In contrast the average
normalized V*C is lower for the 2-Dr vehicles.

Table 6.

Average Normalized Thoracic Criteria
4-Dr Vehicle Set | 2-Dr Vehicle Set
driver rear driver rear
dummy | dummy | dummy dummy*

TTId) | 69% 64% 78% 60%
RDC 88% 35% 96% 52%
V*C 81% 7% 66% 14%

*average results from only 2 vehicle tests

Pclvic Injury Criteria

For all the vehicles tested and for both front and rear
dummy, none of vehicles exceeded the criteria for either
regulation (See Figures 8. and 9.). For the driver dummy, the
results were more of a mismatch when comparing the results
for the two regulations. The normalized PelvicG in the
FMVSS 214 tests was on the average 8% higher than PSPF in
the EU tests for four of the vehicles and lower by 10% for the
other four. When looking at the 4-Dr vehicles separately,
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214 vs EU Driver Pelvic Injury Criteria
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For the rear passenger dummy, the normalized PelvicG was
on the average 38% higher than PSPF for three of the vehicles
and lower by 14% for the remaining three. There was no
apparent trend in these differences for either the 2-Dr or 4-Dr
sets of vehicles.

214 vs EU Rear Occupant Pelvic Criteria
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Abdominal Injury Criterion

For the driver dummy in the EU tests, the Mustang
normalized APF was 92% of the limit specified in the
regulation and the Volvo APF was 29%. The normalized APF
for the remaining six vehicles was clustered closer with an
average of 53% of the limit.

EU Driver Abdominal Injury Criteria
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é 06
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Mustang FEclipse Metro

Taurus Voo

Figure 10.

Overall, the average APF for the driver dummy in 2-Dr
vehicles was 67% of the limit. The average APF for the driver
dummy for the 4-Dr vehicles was lower at 42 %. In contrast,
for the rear dummy, the average APF was only 6.3% of the
limit for the 2-Dr vehicles and 22.3% for the 4-Dr vehicles
with no value exceeding 30% of the limit. The APF results are
presented in Figures 10. and 11.

Head Injury Criterion

For the driver dummy in the EU tests, head contact occurred
for four of the eights vehicles, with an average normalized HPC
of only 8.9% of the limit specified in the regulation. For the
rear dummy, contact occurred for three of the six vehicles with
an average HPC of 27.8% of the limit. The normalized HPC
and HIC36 values from the EU tests are presented in Figures
12. and 13. HPC is plotted only if head contact occurred.
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“Flat-Top”Anomalies
Responses

in Eurosid-1 Rib Deflection

Figures 15. through 28. present an overlay of the raw (Class
1650) rib displacements for both the front and rear dummy for
the vehicles tested. As shown in the figures, sustained peaks
(plateaus of flat-tops) as long as 15 ms in at least one of the rib
displacement curves are present for the driver Eurosid-1 for all
the vehicles tested. These flat-tops are present for the rear
dummy in three of the six vehicles. The displacement levels of
these plateaus range anywhere from 15 to 50 mm and are below
the full range of the rib potentiometers of the dummy.

Lau reported on this phenomenon in a series of Ford LTD
crash tests [11]. Using a pneumatic impactor to impact the
Eurosid-1, the sustained peaks in the rib displacement were
produced but they could not be created with pendulum impact.
(Integration of the rib and spine accelerations in the impactor
impacts indicated that they were moving away from the
impactor at similar speeds.) Henson et al. reported a similar
tib deflection problem when testing Pontiac 6000's using the
FMVSS 214 procedure with the Eurosid-1 [12]. This was
believed to occur when impacts were more rearward than the
lateral center of the ribs. The American Automobile
Manufacturers Association (AAMA) has highlighted this
anomalous rib behavior in their list of mechanical concerns
relative to the Eurosid-1 dummy [13]. The AAMA has
attributed this behavior to binding in the rib damping modules
due to off-axis loading. Transport Canada has recently
reproduced this flat-top behavior with the Eurosid-1 ribs with
pendulum impacts at -15 degrees from the coronal plane, i.e.
posterior or rearward of the center of the ribs [14]. In those
tests, the pendulum face contacted the projecting back plate
causing an alternative load path through the spine box,
however the rib deflections were near their maximum.
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Review of the high speed film from the series of eight
test presented in this paper indicated that dummy rotation was
visible in most of the tests. Contact with the intruding door
was made more rearward than the lateral center of the ribs on
some of the tests, while contact was forward of the center of
the ribs in some of the tests suggesting off-axis loading
conditions. This flat-top rib behavior of the Eurosid-1 was
reproduced and further investigated with bumper pendulum
impact tests outside the full vehicle test environment as
outlined below.
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Figure 27. Figure 29. Eurosid-1 Bumper Pendulum Tests Setup.

Eurosid-1 Bumper Pendulum Tests - To further
investigate the flat-top behavior in the rib displacement
responses, a series of bumper pendulum impact tests with the
Eurosid-1 were performed. The general test setup is shown in
Figure 29. The part 581 bumper pendulum which has a mass
around 907.4 kg was used in all the tests. The bumper
pendulum was rotated to a sufficient height and also given an
initial velocity via springs to get a closing speed similar to the
door contact speeds encountered in the series of EU full scale
side impact tests. The test conditions are described in the
following:
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The impact speeds were around 18.2 kmv/hr.

The pendulum impact face was a steel plate with a 3/4"

plywood cover, 610 mm wide measured from the seating

surface at a height of 239 mm corresponding to the top of
the molded pelvis of the Eurosid-1.

3. Based on the review of the full scale crash test films, two
impact face heights were used: 239-503 mm (Low Face) &
239-558 mm (High Face) with the seating surfaceat z=0.
The low face extended from the pelvic/abdomen junction
to approximately 1/3 down the arm (arm at 40 degrees)
from the shoulder pivot bolt. The high face extended from
the pelvic abdomen junction to the center of the shoulder
attachment boit.

4. The dummy was placed on the horizontal flat steel seating

surface with legs extended.

N =



Tests included +/-15 degrees, and 0 degrees left dummy
side impacts (e.g. + 15 degrees is an anterior oblique
impact and requires rotating the dummy by +15 degrees
about the z-axis using a right-hand coordinate system with
x positive in the posterior-anterior direction, and y positive
lateral to the left.)

The 18.2 km/hr impact was on the low end of the range of
25-40 kmv/hr door contact speeds encountered in the EU full
scale tests but, as can seen from the following figures,
reasonable rib displacements ranges of 10 to 40 mm were
achieved as compared to the values obtained in the full scale
tests.

As shown in Figures 30, through 34., for both impactor face
heights significant flat-top rib deflections responses were
present in the +15 degree impact condition, while 0 degree
impacts produced a lesser flat-top. The flat-top behavior did not
occur for the tests at -15 degrees, neither with the Low Face nor
with the High Face.
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Based upon this work and that of other researchers, the
authors have developed the following hypotheses for the cause

of rib flat-tops in the Eurosid-1:
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1) Binding of the rib damper module: Henson et al.
suggested that moment is transferred across the rib damper
in the Eurosid-1 thorax during oblique impact [12]. Such
a moment could cause excessive friction between the
piston and cylinder wall of the damper, and cause it to
bind.

2) Load Bridging: In this test condition, each of the
elements of the torso (the shoulder complex, each of the
thoracic ribs, abdomen, and possibly the back plate) share
the total force transferred to the spine box to accelerate
Eurosid-1 through the change of speed of the test. Load
bridging can occur when an element’s adjacent neighbors
experience an increase in stiffness (due to a constitutive
relationship in a material or structure, and/or a mechanical
binding) and thus the element’s deflection is governed by
its neighbors. For example, should the upper and lower
rib of the Eurosid-1 thorax bind due to some mechanical
defect and thus increase their stiffness, the deflection of
the middle rib should not exceed that of the upper and
lower ribs. Load bridging may be present between a
binding shoulder and the abdomen, or the shoulder and
pelvis, or direct contact with the back plate, thereby
limiting the deflection of the rib modules.

A series of tests was conducted at +15 and O degrees to
determine the load sharing between the thorax and the
abdomen. In these tests the load wall contacted the abdomen
and thorax only, while the arm was rotated 180 degrees to
point straight up, such that it was not contacted by the
impactor. Figures 35. and 36. show the results from these
tests, and flat-tops are observed in these conditions. These
results show that after the flat-top rib responses, abdominal
loads drop off significantly, and then rise again as the thorax
beginsits expansion. Newton’s first law applied to deformable
bodies loaded in parallel requires that a) the total load applied
equal the sum of the loads carried by each of the bodies, and b)
the load one body carries is directly proportional to its stiffness
and mass (stress follows elastic modulus and density). Based
on this law, we can then conclude from the data that the drop
in force on the abdomen indicates an increase in force on the
thorax. Thus we would conclude from this test that the flat-top
is a result of binding within rib modules or quite possibly of
the damper modules themselves. However, this may notbe the
only mechanism of rib binding in other test environments.



plates of the shoulder assembly, and use of plastic spacers in
the lumbar spine and neck similar to those used in the SID.
The modifications in this upgrade kit are minor in nature and
would not seem tot address the major issues such as alleged
binding of the damper in the rib cage, the influence of the
kinematics of the shoulder structure on the rib cage deflection,
and the deformability of the pelvis bone.
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Figure 35.

Another series of tests with the Eurosid-1 was performed
with the Eurosid-1 jacket removed at + 15 degrees, the results
of which are shown in Figure 37. While these tests were
originally designed to permit viewing of the thorax and
shoulder during impact, the results indicate that there is a
significant change in the dummy behavior between the jacket
on and jacket off tests. In Figure 37., the results from three
repeat tests at + 15 degrees, with the Eurosid-1 jacket removed
in two of the tests, are presented . The results show that the
flat-top behavior occurred in all of the three tests. These results
indicate that the flat-top behavior is not only reproducible but
is also repeatable under the given test conditions.

Other researchers have suggested that the impactor/door
surface may come in contact with the back plate of the dummy,
thereby off-loading the rib structure and causing a flat-top.
Inspection of films from these series of bumper pendulum tests
indicate that no impactor-to-back plate contact occurred.
Moreover, contact with the back plate is only likely with a
combination of oblique posterior loading and excessive rib
deflection.

Eurosid-1 Bumper Pendulum Tests with Upgrade Kit -

TNO has recently developed a research kit tool upgrade to
address some of the widely accepted mechanical dummy issues
with the Eurosid-1 (Refer to section Euresid-1 Mechanical
Deficiencies) . The research upgrade kit for the Eurosid-1
addresses a number of minor issues. These include smoothing
sharp edges on the projecting torso backplate, use of bumper
washers to minimize impacts between the femur shaft and
pubic load cell mounting hardware, beveling sharp edges on

the clavicle link to prevent binding with the aluminum g\ii%?l
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In April 1998, the Eurosid-1 research upgrade
kit was made available to NHTSA for evaluation. To date,
a preliminary evaluation was performed through a series of
bumper pendulum tests under test conditions similar to
those described in the previous section. Tests were
performed with the Low Face and were run at + 15 and 0
degrees. The purpose of performing repeat tests with the
upgrade kit installed in the Eurosid-1 was to investigate if
modifications in the kit address the flat-top anomalies in the
rib potentiometer responses.

Figures 38. through 40. show the results from two
repeat tests at + 15 degrees and one test at 0 degrees. As can
be seen from the figures, the flat-tops are still observed in
these conditions.
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Conclusions Regarding Eurosid-1 Rib Responses
“Flat-Top” Anomalies -

Irrespective of the mechanism causing the anomalous
behavior, the flat-top behavior in the rib potentiometer
responses indicate that what should be the true peak rib
deflections may not be occurring and thus the resulting rib
deflections are in doubt. The V*C computation which is
based on the rib deflection would also be suspect. In light
of this, the RDC and V*C values for the EU 96/27/EC
vehicle tests presented in this paper are questionable.
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COMPARISON OF VEHICLE RESPONSES

MDB Engagement - The EUMDB is 176 mm or 10.5 %
narrower than the 214MDB and in the EU procedure it is
centered on the driver seating reference point while the
214MDB is positioned more forward and is positioned relative
to the center of the wheelbase. This resulted in no MDB to
A-pillar engagement in the EU tests while the A-pillar was
engaged in all of the FMVSS 214 tests. Also, the EUMDB
right edge engaged the vehicle rearward of the 214MDB right
edge for all of the vehicles tested. (See Table 7.). The vehicle
contact areas for the EUMDB and 214MDB, drawn to scale,
are shown for the Lexus SC300 and Volvo 850 in Figures 41.
and Figures 42. as examples.

Table 7.
FMVSS 214 vs EU 96/27/EC MDB’s to Vehicle Contact
Vehicle Left edge Right edge
difference* difference*
(mm) (mm)
Ford Taurus N/A N/A
Volvo 850 SW 253 77
Nissan Sentra 274 98
Hyundai Sonata 236 60
Ford Mustang 311 135
Lexus SC300 433 257
Geo Metro 337 161
Mitsubishi Eclipse 358 182
* 214MDB-EUMDB; positive is forward
EUMDB EUMOB LEXUS
LEFT RIGHT

EDGE EDGE

214MDB
LEFT

214MDB
RIGHT
EDGE

Figure 41. Lexus SC300: EUMDB and 214MDB Contact
Areas.
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VOLVO

Figure 42. Volvo 850: EUMDB and 214MDB Contact

Area.
Table 8.
Side Intrusion at Door Sill, Driver H-pt, & Mid Door
Door Sill Driver H- Mid Door
Vehicle Level pt level level
max and max and max and
average average average
crush (mm) | crush (mm) | crush (mm)
- @) - Q - &)
~|E]s|8f=s]8
w o 7] o 172] ::l
14 v v S 1 S
slalelfsfz]s
= = =] =
B = = = =
Ford N/A | N/A ||N/A | N/A || N/A | N/A
Taurus*
Volvo 850 || 110 | 150 || 284 | 264 || 280 | 270
SW 70 69 220 178 227 189
Nissan 166 | 217 || 310 | 372 |i 280 | 377
Sentra 125 | 120 || 270 | 287 )| 172 | 217
Hyundai 147 281 388 443 394 435
Sonata 91 164 1 326 | 291 1§ 332 | 305
Ford 132 | 266 || 254 | 333 || 234 | 335
Mustang 99 153 || 220 | 211 171 | 197
Lexus 157 | 130 || 320 | 330 (| 351 | 304
SC300 109 | 100 | 272 | 216 || 239 | 193
Geo Metro || 160 | 112 || 239 | 249 || 226 | 262
112 70 227 179 || 161 141
Mitsubishi || 178 | 196 || 304 | 333 || 296 | 333
Eclipse 157 | 107 [l 287 | 265 || 258 | 248

* Crush profile data was not available for the Taurus EU test




Side Crush Profile Comparison - In order to facilitate
comparison with the intrusion profile in the FMVSS 214 tests,
pre and post test side crush measurements were collected for
the EU tests as specified in the FMVSS 214 test procedure [15].
The maximum side crush at the door sill and mid door levels
for the EU and FMVSS 214 tests are presented in Table 8. It
is worth noting that relative magnitude for the maximum
intrusion at these levels did not correlate with the thoracic and
pelvic criteria values for the different vehicles neither for the
FMVSS 214 nor for the EU tests. With the exception of the
Volvo 850, the maximum static intrusion at the driver H-pt
level for the EU tests was on the average 41 mm larger than for
the FMVSS 214 tests. At the mid door level, with the
exception of the Volvo 850 and Lexus SC300, the maximum
static intrusion at the driver H-pt level for the EU tests was on
the average 62 mm larger than for the FMVSS 214 tests.

The static crush profiles at the door sill and mid door levels
are presented in Figures 43. through 56. In general, in the EU
tests, the crush profile is more rounded with larger intrusion
around the B-pillar and the rear section of the front door. In
the FMVSS 214 tests, the crush profile is more rectangular in
shape with the intrusion more evenly distributed along the area
of MDB-to-vehicle engagement. This is attributed to the
characteristics of the EUMDB and 214MDB and their
positioning as described earlier.

At the sill level, with exception of the area around the
B-pillar, intrusion was larger for the FMVSS 214 tests of the
Metro, SC300, Sentra, and Eclispe. In contrast, the intrusion
was significantly larger at the sill level for the EU tests of the
Sonata and Mustang,.

At the mid door level, also with the exception of the area
around the B-pillar, intrusion was larger for the FMVSS 214
tests of the Metro, Sonata, and Eclispe. In contrast, the
intrusion was significantly larger at the mid door level for the
EU tests of the Sentra and Mustang, specifically around the B-
pillar and rear scction of front door areas. In fact, the B-pillar
was split in half in the EU test of the Mustang.

The Lexus SC300 was the only vehicle which had more
intrusion at both the sill and mid door levels for the FMVSS
214 test. For the Volvo 850, which is designed to meet both
regulations, intrusion at both levels was comparable for the two
regulations. It is worth noting that both the 850 and the SC300
were the best performers in the 4-Dr and 2-Dr vehicles sets
relative to the requirements of both regulations.
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Figure 46. Figure 49.
Mitsubishi Eclipse Crush Profile - Door Sill Lexus SC300 Crush Profile - Mid Door
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COMPARISON WITH RELEVANT PREVIOUS
RESEARCH
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Because of the fluid nature of the European test procedure,
the database of full scale vehicle crash tests which can be
directly compared to testing performed with the current
procedure is limited. The data are further limited if
comparisons are required between the same vehicles tested to
both the U.S. and EU regulations. Satake et al. reported on 24
full vehicle tests on five Japanese vehicles using the U.S. and
(ECE/R.95) procedures [9]. The ECE/R.95 procedure matches
that of the EU Directive, however the barrier height was 260
mm rather then 300 mm. Some tests were run at 300 mm for
comparison. The barrier face used was made by UTAC of
aluminum with a triangular pyramid-shaped design.

In the baseline test, both 4-Dr vehicles exceeded the rib
deflection criteria when tested to the ECE. Both 4-Dr vehicles
were below the TTI limit in the U.S. test although one was
close to it. Comparing the 2-Dr vehicles to the 4-Dr, in the 2-
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ECE test, and the rib deflection was lower. For one of these
vehicles, the abdominal force exceeded the limit in the ECE
test, but for the same vehicle tested to the U.S. procedure, all
injury criteria were below their limits. For the other 2-Dr
vehicle, the U.S. procedure was more severe, with a very high
TTI and pelvic acceleration. The ECE procedure resulted in
rib deflection, abdominal loads and pelvic loads at or slightly
above the limits. These results were obtained with the barrier
height at 260 mm. A 4-Dr vehicle and 2-Dr vehicles were
tested with both a 260 and a 300 mm barrier height. All injury
criteria were greater for the 300 mm barrier except abdominal
force which had about the same result.

The above results may indicate that, for 4-Dr vehicles, the
current EU Directive is more difficult to pass than FMVSS 214,

Bergmann et al. also performed tests using the ECE/R.95
procedure [27]. Testing was done at barrier heights of 260 and
300 mm with barrier faces of Kenmont, Fritzmeier, Hexcel and
AFL eclements. Average results across all tests were
determined. Both V*C and RDC for the 4-Dr vehicles were
much higher than for the 2-Dr vehicles. V*C was in the
vicinity of the criterion limit. However, for APF and PSPF the
2-Dr vehicles had higher values than the 4-Dr.

Beusenberg et al. found a similar dependence on the number
of doors a vehicle has when tested to the (EEVC) procedure
[10]. Seventeen 4-Dr tests and five two-door tests were
analyzed. It is not clear what barrier face construction was
used for these tests nor what barrier height was employed. The
average and maximum V*C and rib deflection, in general, were
below the injury criteria for 2-Dr vehicles. For 4-Dr vehicles
the average V*C was above the criteria and the average rib
displacement was equal to the criteria. For 2-Dr vehicles the
abdominal force was above the criteria. For 4-Dr vehicles the
abdominal forces were below the criteria. Pubic loads were
higher for 2-Dr vehicles than 4-Dr, but both were well below
the criteria.

In the current set of test, it is not clear if the relative
severity of each regulation is influenced by the number of
vehicle doors. Table 9. gives the vehicle type (2-Dr or 4-Dr)
which has the larger normalized injury criteria and the
percentage by which it is greater. Also given, is the result of a
student’s t-test to determine if the difference in the injury
criteria is statistically significant. Significance will be
determined at p<0.10. However, the determination of
significance is certainly influenced by the small sample size of
4 vehicles in each category.

The following discussion is limited to the front seat dummy.
Some results seem consistent with previous work whereas
others do not. This is mainly attributed to barrier height
differences and the lack of consistent performance amongst the
various European barrier faces. For the EU procedure, the
average normalized V*C was 23% greater for 4-Dr vehicles
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than for 2-Dr vehicles. This is consistent with the results
reported in [10] and [27]. However, using a students t-test it
is shown that this difference is not significant (p=0.59). The
averaged normalized RDC was 7.9% greater for 2-Dr vehicles.
This is in contrast to [10] and [27]. This difference is also not
significant (p=0.66). For the U.S. procedure, the average
normalized TTI was 12% greater for 2-Dr vehicles. This was
consistent with results report in [9]. However the difference is
not significant (p=0.40). So for the chest injury criteria no
consistent or significant difference is evident for either
regulation relative to the number of vehicle doors.

For the EU procedure the normalized PSPF was greater for the
2-Dr vehicles by 31% (p=0.31) which is consistent with [9],
[10] and [27]. While for the U.S. procedure the normalized
PelvicG is nearly the same for both 2-Dr and 4-Dr vehicles,
which is not consistent with [9]. Finally, the normalized
average APF is 57% greater for 2-Dr vehicles than for 4-Dr
vehicles. This difference is considered significant at p=0.053.
An increase in APF for 2-Dr vehicles was also reported in [9],
[10] and [27].

Table 9.
Vehicle Type With Greater Average Normalized Injury
Criteria
L Q = O | = I
S8 F| 28| %
3]
B
No. 4 2 2 4 2 2
Doors
% 23 7.9 12 0.64 | 31 57
greater
p 0.59 | 0.66 | 0.40 | 097 | 0.31 | 0.053

INITIAL ASSESSMENT OF FUNCTIONAL
EQUIVALENCE

From NHTSA’s perspective, in basic terms, a foreign
vehicle safety standard is considered functionally equivalent to
a counterpart U.S. standard when the two standards address
the same safety need and provide similar safety benefit in the
U.S. crash environment. Relative to the European and U.S.
side impact regulations, FMVSS 214 has only recently been in
full effect for passenger cars and will apply to LTV’s by the
end of this year, and EU 97/26/EC is not yet in effect. As
such, there is currently insufficient real world safety data to
assess the effectiveness of either regulations whether in the
U.S. or European real world environments.



Data from compliance testing, such as the series presented
in this paper, can be used as a surrogate. Injury risk curves
would be used to assess occupant risk in the real world from the
computed injury criteria obtained via crash testing. Currently,
injury risk curves are not available for the abdominal, pelvic,
and head EU injury criteria. In addition, due to the volume
and quality of the earlier injury and impact data, the EU injury
risk functions originally developed for the thoracic region need
to be improved [16]. Moreover, those thoracic injury risk
functions were based on the responses of the Production
Prototype versions of the Eurosid dummy and would need to
be updated for the production Eurosid-1.

In addition, the aspect of how well the test conditions and
movable deformable barrier of the EU regulation represent the
real world U.S. crash environment cannot be overlooked when
assessing the relative safety benefit of the two standards. A
dynamic crash test requirement in a safety regulation should
simulate the crash environment to the extent possible. More
importantly, the dynamic requirement should provide for
realistic injury causing mechanisms. The representativeness of
the EUMDB as the striking vehicle must be considered because
a large portion of the U.S. side impact casualties are the result
of impacts with light trucks, vans and sports utility vehicles.

Issues in several arcas that need to be addressed before any
conclusive determination of the functional equivalence of the
two side impact regulations are outlined below.

Vehicle Issues

In terms of the overall vehicle performance, similar
comparative testing of vehicles designed to European
requirements would be needed to assess if such vehicles
perform well relative to FMVSS 214. The testing presented in
this paper is only one part of a general matrix to assess the
respective comparative performance. Testing of vehicles
designed to both standards and testing of additional vehicles
equipped with side air bag systems, which are becoming
prevalent in the U.S. fleet, would be a part of this general
matrix. The repeatability and reproducibility of testing to both
regulations would also need to be addressed.

Vehicle Compliance and Rankings - Bascd on this series
of comparative testing, FMVSS 214 and EU 96/27/EC did not
provide similar vehicle performance rankings nor pass/fail
results based on the respective thoracic and pelvic criteria (sce
Tables 10., 11.,and 12,). Overall, the vchiclcs tested had been
chosen based on compliance to FMVSS 214, However, three
out of these cight vehicles failed one or two of the EU criteria
for the driver.
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Table 10.
FMVSS 214 vs EU 96/27/EC Criteria: Pass/Fail (P/F)
Vehicle Dr | 214 214 EU EU
P/F | 80%* | P/F 80%*
Volvo850SW | 4 | P P P P
Ford Taurus 4 P P P F
Nissan Sentra 4 P P F F
Hyundai 4 P F P P
Sonata
Ford Mustang | 2 P P P F
Lexus SC300 2 P P P P
Geo Metro 2 P F F F
Mitsubishi 2 P F F F
Eclipse

* 80 % = Exceed 80% of Criteria

For statistical confidence to be achieved, certain
manufactures require that, as a vehicle design basis, regulation
requirements must be met by a margin considerably below the
actual limits specified. As such, pass/fail results based on
80% of the criteria were also investigated for this series of
comparative testing. Three of the eight vehicles exceeded 80
% of at least one of the FMVSS 214 requirements while five of
the vehicles exceeded 80 % of at least one of the EU
requirements. The Metro and Eclipse exceeded 80% of one or
more of the requirements for both regulations. The Taurus,
Sentra, and Mustang exceeded 80% of the requirements of the
EU regulation only while the Sonata exceeded 80% the
requirements of FMVSS 214 only.

Considering the vehicle rankings for the 4-Dr vehicles
based on the driver dummy criteria, FMVSS 214 TTI(d) rated
the Hyundai Sonata as fourth, while the EU RDC rated the
Sonata as first and the V*C rated it as second. Rankings based
on the pelvic criteria for the 4-Dr vehicles were a much better
match with only the third and fourth position switched.



Table 11.
FMVSS 214 vs EU 96/27/EC 4-Dr Vehicle Rankings:

Since the relative rankings of the vehicles tested did not
look promising, linear regression analysis was applied to

Driver evaluate the degree of correlation between the thoracic and
; N pelvic criteria of the two regulations. p?, the regression output
Vehicle TT:{ RD]C( M (l:( Pelvl({} tSPlI: that indicates how well one variable can be predicted through
ran ran ran ran an a linear transformation of another variable, is presented in
Volvo 1 2 1 1 1 Table 13 .
850
Table 13.
Ford 2 3 3 2 2 Regression Analysis (p?) of FMVSS 214/EU 92/27/EC
Taurus Criteria for the 4-Dr/2-Dr Vehicles
Nissan 3 4 4 3 4 Driver Criteria Rear Occupant
Sentra Criteria*
Hyundai 4 1 ) 4 3 TTI(d) PelvG TTI(d) PelvG
Sonata RDC | .04/.46 ] 61 ;
V*C .13/.3 - .61 -
Table 12.
FMVSS 214 vs EU 96/27/EC 2-Dr Vehicle Rankings: PSPF - J7/.11 - 0.17
Driver * Regression was not performed for 2-Dr rear occupant since
Vehicle | TTI | RDC | v+C | PetvG | psp || there wasonly two data points
rank | rank | rank | rank rank
Ford 1 ) 3 1 4 Overall, the results indicate mediocre or no correlation
Maustang between the thoracic and pelvic criteria of the two regulations
for the eight vehicles tested. In particular, the correlation for
Lexus 2 1 1 2 1 the driver dummy thoracic criteria for both the 4-Dr and 2-Dr
SC300 vehicles is poor. The correlation for the rear occupant thoracic
criteria for the 4-Dr vehicle is mediocre. Finally, the
Geo Metro 3 3 2 3 3 correlation for the driver dummy pelvic criteria is relatively
2: - i -
Mitsubishi 4 4 4 4 2 good, P 0.77, for the 4-Dr vehicles but very poor for the 2
. Dr vehicles.
Eclipse

As to vehicle rankings for the 2-Dr vehicles based on the
driver dummy criteria, there was a good match for the thoracic
criteria with only the first and second position switched.
Rankings based on the pelvic criteria were a poor match.
PelvicG rated the Ford Mustang as first while PSPF rated the
Mustang as fourth. PelvicG rated the Mitsubishi Eclipse as
fourth, while PSPF rated the Eclipse as second.

It is worth noting that the Volvo 850 which ranked first
amongst the 4-Dr vehicles for the all the injury criteria of both
regulations, with the exception of ranking a close second for
RDC, was the only vehicle in the matrix tested which was
designed to meet both regulation. In addition, it has a side
mounted air bag system. As to the Lexus SC300, which ranked
first or second amongst the 2-Dr vehicles for both regulations,
it was actually designed to meet FMVSS 214. Its good
performance relative to the EU requirements may be attributed
to its inherent design, with a sporty wider track and
considerable crush space between the occupant and inner door,
and between the inner and outer door.
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Real World Vehicle Issues - In Figure 6., the FMVSS
214 and EU 96/27/EC thoracic injury criteria values are sorted
by vehicle weight from left to right for the 2-Dr and 4-Dr
vehicles. The vehicle weights are presented in Table 14.
below. In the FMVSS 214 tests, TTI(d) exhibited a trend of
better performance, i.e. lower values for the heavier vehicles,
for both the 2-Dr and 4-Dr vehicles. This is consistent with
the real world performance in the U.S. crash environment as
indicated by a recent study by Farmer et al. of vehicle-to-
vehicle side impact crash study based on 1988-1992 National
Accident Sampling System Crashworthiness Data System
(NASS/CDS) [17]. The study, which excluded crashes
involving rollovers or ejections, indicated that occupants of
heavier vehicles were less likely to be seriously injured (AIS >
3) in a side impact than occupants of lightweight vehicles. For
every extra 45.4 kg in the weight of the subject vehicle, there
was a corresponding 7-13% decrease in the odds of serious
injury. Incontrast, in the EU 96/27/RC tests, the lighter 4-Dr
Sonata performed better than the heavier Taurus, while the
heavier 2-Dr vehicles performed better overall for the EU
thoracic criteria.




Also, in earlier comparative full scale testing by Dalmotas
et al, using 1988 U. S. production vehicles, the small
Chevrolet Sprint performed much better than the large
Chevrolet Caprice and Pontiac Bonville when tested to the
European procedure [18]. The matrix of seven vehiclesused in
the comparative testing by Dalmotas et al. exhibited better
performance for the larger vehicles when tested to the FMVSS
214 procedure. This trend was relative to TTI(d), computed
from the SID and a production prototype Eurosid which was
used as the basis of comparative performance for these tests at
Transport Canada. Additional full vehicle testing would be
needed to further investigate this possible anomaly in the
performance of large vehicles relative to the EU requirements.

Table 14,
Weights of 4-Dr Test Vehicles
Vehicle Mass (kg) Wheel Base

(tum)
Ford Taurus 1738 2760
Volvo 850 1666 2670
Hyundai Sonata 1540 2700
Nissan Sentra 1307 2535
Lexus SC300 1819 2685
Ford Mustang 1617 2574
Mitsubishi Eclipse 1459 2515
Geo Metro 1039 2365

Application of the Standards - FMVSS 214 becomes 100
percent effective for light trucks, vans, and multiple purpose
vehicles (LTV’s), a growing proportion of the U.S. fleet, in the
1999 MY. In the EU regulation, vehicles with R-point of
lowest seat >700 mm are excluded. The H-points of large
pickups, sports utility vehicles, large vans, some of the compact
pickups, and the majority of minivans are typically larger than
700 mm. As such, the EU regulation does not apply to the
majority of LTV’s. The current U.S. crash environment (1988-
1996 NASS/CDS and Fatality Automotive Reporting System,
(FARS)), when viewed as a yearly average, indicates that LTV
occupants, are relatively safe when involved in side crashes,
accounting for 14 % of involvement and resulting in 10 % of
the severe injuries and the 11 % of the fatalities. Never the
less, LTV’s are currently 34% of vehicle registrations', and
their proportion of the U.S. fleet is growing as seen by the trend
in market share, with LTV’s making up 43% of vehicle sales
in 1996. As such, there is a need for the EU rcgulation to
address the LTV vehicle class if it were to become applicable

' Source R. L. Polk Co, 1996 1750

in the U.S. Full vehicle testing of LTV’s would then also be
needed to assess the relative benefits of the U.S. and EU
regulations as applied to LTV’S and in particular assess the
adequacy of the EUMDB in such tests.

Movable Deformable Barrier and Test Conditions Issues

MDB Issues - As indicated previously, a dynamic crash
test requirement in a safety regulation should simulate the
crash environment to the extent possible and should also
provide for realistic injury causing mechanisms. As shown
in Figure 57., over 43% of the fatalities and 37% of the serious
injuries (MAIS > 3) in U.S. light vehicle side impact crashes
are in side impacts where an LTV is the striking or bullet
vehicle. This is based on a yearly average from the current
U.S. crash environment (1988-1996 NASS/CDS and FARS).
As shown in Figure 58., when the trend of fatalities in struck
vehicles is reviewed from 1980 through 1996 FARS, fatalities
in car to car side crashes are decreasing while fatalities in LTV
to car side crashes have more than doubled. In fact, a recent
study by Gabler and Hollowell indicated that based on 1996
FARS, side impacts in which an LTV was the bullet vehicle
resulted in 56.9% of the all the fatalities in side struck light
vehicles [25]. This initial assessment, combined with the fact
that the LTV population is growing in the U.S. fleet, suggests
the following: The MDB in the dynamic test procedure for a
side impact regulation in the U.S. should provide for injury
causing mechanisms similar to those caused by the LTV
vehicle class in order to provide a good representation of the
current and future U.S. side crash environment. The MDB
weight, stiffness, and geometry characteristics would need to
be evaluated on this basis.

Fatalities/Injuries in VTV Crashes by Bullet Vehicle
1988-96 NASS/CDS - No R/IO
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As a vehicle class, LTVs are heavier on the average as a
vehicle class. A study by Kahane of 1985-1993 passenger cars
and light trucks indicated that LTVs were on the average
heavier by 358 kg than cars with a slowly growing weight
mismatch between the two classes [26]. In 1993, the sales
averaged mass of LTV at 1770 kg was 422 kg heavier than that
of passenger cars at 1348 kg. Figure 59. presents the test
weight of the EUMDB and 214MDB along with the average
test mass of cars, multipurpose vehicles (MPV) or sport utility
vehicles, pickups, and vans in NCAP frontal tests conducted by
NHTSA.

Average Test Weight
(NCAP Frontal Test 1970-1997)
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Figure 59.

LTVs also typically have a stiff frame-rail design versus the
softer car unibody designs. Figure 60. presents the average
stiffness of the Plascore EUMDB calculated from the force
deflection performance corridors, and the average stiffness of
the 214MDB derived from the force deflection response in a
40km/h rigid barrier impact. The figure also presents averages
of the linear stiffness for cars and LTV vehicle categories based
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on results from the New Car Assessment Program (NCAP)
frontal tests. The quotient of the total barrier force and the
corresponding displacement of the occupant compartment was
used as a cursory measure of vehicle “linear” stiffness from the
NCAP frontal test results. This cursory study indicates that
overall, LTVs have about twice the frontal linear stiffness of
cars. It is worth noting that the standard deviations in the
average linear stiffness for passenger cars and each of the LTV
vehicle categories is large. This indicates that there is a wide
range of linear stiffness values within each of the vehicle
categories. These initial results indicate that the Plascore
EUMDB has a frontal stiffness representative of a passenger
car and is less stiff than the 214 MDB. Strength comparisons
and force versus deflection comparisons of the EUMDB and
214MDB are also presented in Figure 61. and 62.
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Figure 61. EUMDB and 214MDB Force Deflection
Response Comparisons.

As a final note, the geometry of the striking bullet and, as
such, a representative side impact MDB should also be
addressed. LTV pickup and sports utility vehicles have higher
hood height than passenger cars. Also, LTVs typically ride
higher than cars. As indicated by the study by Gabler and



Hollowell, the sport utility vehicle category of the LTV class
has the highest ride height with an average rocker panel height
of 390 mm.
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Figure 62. EUMDB and 214MDB Strength
Comparisons.

In summary, a quick look at the striking vehicle in the
current U.S. crash environment indicates that the EUMDB is
inferior to the 214MDB in representing the striking bullet in
the current and projected U.S. side crash environment.

Test Conditions Issues - As seen in Figure 63., analysis
of the current U.S. side crash environment indicates that the
struck vehicle does have a longitudinal component of the
change of velocity. This supports the crabbed configuration of
the U.S. test procedure. Campbell et al., Satake et al., and
Bloch et al. have reported that when the side impact barrier
was not crabbed, the injury measures for the front dummy were
higher and that the crab angle is a very significant if not the
most pervasive factor in the severity of the front dummy
loading [28, 9, 29]. As such, the higher thoracic injury
measures for front dummy and the high intrusion levels in the
arca of the rear front door seen in the EU tests, presented in
this paper, are not nccessarily representative of real vehicle to
vehicle side crashes.

In 1991, Dalmotas ct al. reported that in a series of vehicle
tests performed by Transport Canada, the vehicle deformation
patterns or side crush profile produced by the 214MDB in the
immediate proximity of the driver’s scat, showed closer
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agreement with vehicle to vehicle damage patterns than those
produced by the EUMDB [18].

In 1996, Bergmann et al. reported that in a series of
vehicle tests performed by Volkswagen AG, the deformation
patterns in the vehicle to vehicle impacts can be compared
neither with those in the ECE/R.95 tests nor with those in the
FMVSS 214 tests {27]. Nevertheless, the data presented by
Bergmann et al. did indicate that the deformation patterns in
the FMVSS 214 tests were a closer match than those of the
ECER.95 tests. Bergman et al. also reported that their vehicle
to vehicle tests showed severe loading of the struck vehicles in
the lower side region, and that the penetration resistance must
be increased (safety catch, increased sill overlap area, etc.) for
real accidents. They stated that such vehicle design, however,
leads to increased thoracic loading in the ECE/R.95 test. They
also stated that in the development phase of new vehicles, a
vehicle can be well above the injury limits in FMVSS 214 but
exhibit very low occupant loadings in ECE/R.95. As
mentioned previously, the ECE/R.95 procedure matches that
of the current EU Directive, except the barrier height was 260
mm rather then 300 mm.
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Figure 63.

Injury Criteria Functional Equivalence Issues

Head Protection Criterion Issues - The EU regulation has
a head protection criteria while FMVSS 214 does not. The
database of FMVSS 214 tests, to date, indicates that for the
driver dummy, head contact with the vehicle interior or the
MDB docs not occur frequently. In the series of tests presented
in this paper, HPC averaged less than 10% of the limit for the
driver dummy, and lIess than 30% for the rear dummy with
head contact occurring in half the tests. The results imply that,
in the context of the current side impact standards, the HPC is
not a meaningful or critical criterion. This suggests that
neither FMVSS 214 nor EU 96/27/EC provides the correct test
conditions to evaluate head injuries in the side impact crash
environment.




Abdominal Criterion Issues - The EU regulation has an
abdominal criterion while FMVSS 214 does not, and the SID
dummy of FMVSS 214 lacks the measurement capabilities
even to determine such a criterion. Previous research in this
area by Dalmotas et al. [18, 19] indicated that the SID is not
sensitive to localized door intrusion, specifically due to the arm
rest, which has the potential of causing severe abdominal
injuries. The TTI(d) of the SID dummy addresses the hard
thorax which includes the liver and spleen. As such, there may
be some potential for abdominal protection with vehicle
designed to FMVSS 214. However, the cadaveric test
conditions, in which TTI was developed, did not include
localized loading of the abdominal region [20]. This factor
would need to be addressed in assessing functional equivalence.

Thoracic Criteria Issues - Regarding the thoracic criteria,
the EU regulation has deflection, or chest compression based
criteria while FMVSS 214 has an acceleration based criterion.
There has been an ongoing historical debate on which criteria
better represent the correct injury mechanism and as such
would best predict human occupant injuries.

In earlier research at Wayne Sate University, Cavanaugh et
al. argued that C and V*C_,, are superior to TTI in predicting
thoracic injury [21]. In that research, the compression and
V*C were calculated for both the arm and the chest and not just
the chest as should be done. The results were also based on a
small number of cadavers. In recent research at the University
of Heidelberg, Kallieris et al. reported that they found the TTI
to be the best predictor for the thoracic injury severity [22].
Compression and V*C were also found to be good predictors.
Also, in recent research at the Forschungsvercinigung
Automobiltechnik FAT, Zobel et al. stated that the overall
severity, as reflected by the injury cost scale ICS, is best
predicted by TTI, and the European plans to use compression
and later V*C are not worth the additional money which they
cost the consumer [23].

In more recent research at the Medical College of
Wisconsin and the Vehicle Research and Test Center, Pintar ct
al. concluded that the TTI criterion demonstrated superior
injury prediction capability over V¥C and C [24]. The data was
based on an additional 26 cadaver side impact tests using
advanced instrumentation to measure the kinematic variables
necessary to generate all current injury criteria measures,
including compression, spinal acceleration, V*C and TTL
Additional analyses of the growing database of cadaver tests
would be needed to bring closure regarding the merit of the
current thoracic injury criteria, and in assessing functional
equivalence of the two regulations.

Pelvic Criteria Issue - The EU pelvic criterion is force
based while the FMVSS 214 criterion is acceleration based.
Further research would be needed to determine which pelvic
criterion best addresses real world pelvic injuries.

Side Impact Dummy Issues

Dummy Biofidelity - There is a general consensus in the
scientific community that improvements to both biofidelity and
instrumentation capabilities of the U.S. SID and the European
Eurosid-1 regulation dummies are needed. In 1990, the
International Standards Organization (ISO) Working Group on
Anthropomorphic Test Devices, ISO/TC22/SC12/WGS, gave
the SID an overall rating of 2.34 and the Eurosid an overall
rating of 3.22 out of a scale of 10 [30]. The biofidelity rating
for the Eurosid-1 has not been fully developed although an
estimate of 4.2 has been provided [32]. The ISO ratings for
the overall dummy and per body region are listed in Table 15.
These ratings correspond to an ISO classification of
UNACCEPTABLE for the SID and MARGINAL for both the
Eurosid and Eurosid-1 as overall side impact dummies [30].
The 1990 ISO ratings were based on a set of biofidelity
requirements that did not account for muscle tone effects
which are currently more widely accepted. When the muscle
tone effects are taken into account, the overall ratings for SID
and Eurosid change to 2.78 and 3.47 respectively. The
updated ratings correspond to an ISO classification of
MARGINAL for both the SID and Eurosid as overall side
impact dummies. Although the other body regions cannot be
discounted, it is worth noting that for each of the individual
thorax, pelvis and abdomen body regions, the ISO biofidelity
ratings of the SID are higher than the Eurosid.

It might be of interest to note, that the most recent addition
to the SID of the Hybrid III head and neck for the test purposes
of FMVSS 201, Upper Interior Protection, raises the SID I1SO
biofidelity rating to 3.91 without taking muscle tone into
account [38]. If muscle tone were to be added, the SID
biofidelity rating would be as high as 4.3.

Table 18.

ISO Biofidelity Ratings of SID and Eurosid [30]
Body SID Ratings Eurosid Ratings

Region Oct 90 Mar 98* | Oct 90 Mar 98*
Head 0.00 0.00 3.33 3.33
Neck 2.31 2.55 3.04 3.70
Thorax 3.19 5.02 4.02 4,78
Shoulder | 000 | 000 | 342 | 3.0
Abdomen 4.37 438 3.28 3.23
Pelvis 2.76 2.76 2.08 1.76
Overall 2,34 2.78 3.22 3.47

Dummy

* uses corrected biofidelity equation {31] but is not

3 yet formally accepted by ISO/TC22/SC12/WG5



Eurosid-1 Mechanical Deficiencies - Notwithstanding the
biofidelity issues, the Eurosid-1 as referenced by the EU
directive has certain mechanical deficiencies as demonstrated
by the rib “flat tops” anomalies in the series of tests presented
and as indicated by a list of concerns that has been compiled by
the American Automobile Manufacturers Association (AAMA)
[13]. The AAMA list includes binding in the rib modules as
anumber one concern. It also includes issues with the Eurosid-
1 projecting back plate, bending of the plastic ilium of the
pelvis, upper femur contact with the pubic load cell hardware,
and clavicle binding in the shoulder assembly. These concerns
are widely accepted and TNO has developed a research kit tool
upgrade to address some of the outlined Eurosid-1 mechanical
dummy issues. As mentioned earlier, the upgrade kit was
recently made available to NHTSA for evaluation.

To date, initial evaluation by NHTSA through bumper
pendulum testing has demonstrated that the upgrade kit does
not address the flat-top anomalies in the rib potentiometer
responses. As discussed earlier, those are believed to be partly
caused by mechanical binding in the dummy rib cage.

Although minor in nature, it is important to establish how
the upgrade kit modifications influence the Eurosid-1
biofidelity and its performance in full scale vehicle testing. To
date, TNO has performed only components level testing with
the upgrade kit.

Dummy Performance in Higher Severity Testing - The
NCAP has been carried out in the United States for almost 20
years. Around the world, other countries have begun their own
NCAP programs. Side impact tests were added to the U.S.
NCAP starting in 1997. The side impact tests for U.S. NCAP
are conducted using the same dynamic specifications as in the
FMVSS 214 test procedure but at a higher testing speed. There
is an increase of 32% in kinetic energy for the current side
impact NCAP test as compared to the FMVSS 214 test. The
U.S. SID was evaluated and found to perform in a repeatable
and consistent manner in these higher severity crashes before
the initiation of the side impact NCAP. It is highly probable
that any side impact dummy will be used in higher severity
testing. When considering the issues and deficiencies of the
Eurosid-1 (or its upgrade or any new side impact dummy), one
must consider its performance and durability at the regulation
test speed and also at higher test speeds which will be used for

sumer programs or advanced side impact protection
assessments.

Advanced Side Impact Dummy Developments Efforts -
The European community is aware of the nced to upgrade the
Eurosid-1 and has initiated an upgrade project for the dummy,
the SID-2000, sponsored by a Europcan Commission
consortium [34]. The SID-2000 project was started in March of
1998 with TNO as the project co-coordinator. An upgraded
Eurosid-1 prototype is currently the end product in the year
2000. The SID-2000 program will reassess the Europcan
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crash environment including distribution of injuries by body
region, injury criteria, and the need for different size dummies.

In June of 1997, based on a recognized need to harmonize
side impact dummies, the ISO Working Group on
Anthropomorphic Test Devices, ISO/TC22/SC12/WGS,
initiated a work item to develop and standardize a unique
technologically advanced mid-sized side impact dunmy. A
WGS5 Task Group, the WorldSID, with a joint three-way
chairmanship consisting of the Americas, Europe, and
Asia/Pacific, is currently actively performing this work item.
The WorldSID Task Group has a target date of a prototype
advanced side impact dummy in January 2000. The thrust of
the ISO initiative is to develop a common dummy to be
produced worldwide. Given the short development time frame,
the upgraded dummy is expected to take the best features of
existing dummies, one of the main candidates being the 5th
percentile SID-IIs dummy that was recently developed by First
Technology Safety Systems and the Occupant Safety Research
Partnership of the United States Council for Automotive
Research [35, 36].

Recently, the European Commission has approved the
integration of the SID-2000 project into the ISO WorldSID
work item [37]. The SID-2000 consortium is currently
considering modifying the project objectives to ensure its
compatibility with the WorldSID work item. In the interest of
harmonization, it is hoped that the efforts to merge these two
dummy development projects succeed such that the end
product is one harmonized advanced side impact dummy to be
commonly produced and used world wide.

Other Functional Equivalence Issues

The series of tests presented in this paper has shown that a
Eurosid-1 dummy placed in the rear seat in the EU procedure
undergoes a relatively less severe impact than that seen by the
rear SID in FMVSS 214 procedure based on the injury criteria
in each regulation. The reason for this is mainly the
combination of the EUMDB barrier design (softer on the sides)
and uncrabbed 90" impact of the EU test conditions. Lower
loadings on a rear outboard seated dummy due to the
uncrabbed 90° has been also demonstrated by Satake [9],
albeit in that case an uncrabbed FMVSS 214 test condition
with SID dummies was investigated. The current U.S. crash
environment (based on a 1988-1996 NASS/CDS and FARS
study) indicates that rear occupant severe injuries (MAIS = 3)
account for only 7.3% of the total severe injuries and 5.1% of
the overall fatalitics. Thesc low injury rates are at least
partially duc to the low rear seat occupancy rates. Never the
less, it is desirable to require a certain level of protection for
the rear occupant by the placement of a rear dummy in a
dynamic side impact safety standards. This is mainly duc to
the premise that, increasingly, the occupants of the rear scat
are children whose safety should not be compromised.



Finally, FMVSS 214 has a static crush strength requirement
which NHTSA believes provides a certain level of protection
against pole or tree impact [26]. This requirement is not
currently addressed by the EU directive.

SUMMARY AND CONCLUSIONS

The series of comparative testing, presented in this paper,
with current U.S. production vehicles has provided important
insights into the performance of vehicles when tested to the
requirements of the FMVSS 2 14 and EU 96/27/EC regulations.
However, it can only be viewed as a partial step in determining
the overall safety performance of vehicles relative to the two
regulations.

The following are concluded from this series of tests:

® Results indicate that vehicles designed to meet FMVSS 214
may not meet EU 96/27/EC.

® Results also indicate that vehicles can be designed to meet
both standards.

® (Conclusions based on this testing may not be valid due to
the measurement anomalies in the Eurosid-1 and the small
number of vehicles tested.

Also, the following are highlights of the results from this
series of tests:

e FEurosid-1 rib displacements displayed “flat-top” behavior
which imply questionable EU 96/27/EC rib deflection
(RDC) and soft tissue (V*C) criteria values.

® FMVSS 214 and EU 96/27/EC did not provide similar
vehicle performance rankings or pass/fail based on their
respective criteria.

® With the caveat of questionable EU thoracic criteria, results
indicate a higher severity for the driver dummy in the EU
tests for the rib deflection criterion when compared to
TTI(d) in the FMVSS 214 tests. No trend is indicated for
V*C or the pelvic criterion.

® Results also indicate a much lower severity for rear dummy
in the EU tests than in the FMVSS 214 tests for both
thoracic criteria. No trend is apparent for the pelvic
criterion.

o With the exception of Abdominal Peak Force (ABD) for the
Mustang driver dummy, only the V*C and RDC values
were relatively high for the EU tests.

® The EU tests crush profile was more rounded, with larger
intrusion around the B-pillar and rear front door section,
than the FMVSS 214 tests crush profile.

It is important to note that this series of tests is only one
part of a general matrix needed to assess the comparative
performance of vehicles relative to the two regulations. The
general matrix includes testing of European production
vehicle to determine how well such vehicles perform relative
to FMVSS 214. The matrix also includes testing of vehicles
designed for both U.S. and European markets to the
requirements of both regulations. Vehicles equipped with side
air bag systems would also be part of this matrix as they are
becoming prevalent in both the U.S. and European fleet. In
addition, since manufacturers seem to design their vehicles for
optimum performance in the U.S. NCAP, testing of vehicles to
similar higher severity test conditions for both regulations
would also be needed. Moreover, a small number of vehicles
were tested in this series. A larger number of U.S. production
vehicles that more broadly represent the U.S. fleet may need to
be tested.

Other issues have also arisen in this research which may
in the end confound a definitive functional equivalence
determination of the two regulations:

® Light trucks, vans and sports utility vehicles (LTV’s) have
become a significant and a growing segment of the U.S.
fleet. A large portion of the U.S. side impact casualties
results from impacts with the LTV class of vehicles. The
adequacy of both the FMVSS 214 and the EU movable
deformable barrier in representing the striking vehicle in
the current and future U.S. crash environment is in
question. In particular, the lighter and less stiff EU barrier
is less representative of the current and future mix of U.S.
vehicles.

® The issue of providing a meaningful test to assess the safety
of rear occupants in side impacts is a sensitive one since
increasingly the occupants of the rear seat are children
whose safety should not be compromised. In this regard,
there may be an opportunity for improvements in both
regulations, albeit the FMVSS 214 test condition does
provide a better loading environment.

o Initial evaluations of the Eurosid-1 research tool kit
upgrade, recently developed by TNO, has demonstrated
that the upgrade does not address the flat-top anomalies in
the rib potentiometer responses. Although minor in nature,
it is important to establish how the upgrade kit
modifications influence the Eurosid-1 biofidelity and its
performance in full scale vehicle testing. One question
would be if full scale tests, such as the series presented in
this paper, need to be repeated with the upgraded Eurosid-1
to truly assess the comparative performance of vehicles
relative to the two side impact regulations.

In terms of struck vehicle deformation patterns, the crush
profile in the EU tests was more rounded with larger intrusion
around the B-pillar and the rear section of the front door. In
the FMVSS 214 tests the crush profile is more rectangular in



shape with the intrusion more evenly distributed along the area
of barrier-to-vehicle engagement.  Earlier research indicates
that FMVSS 214 test provides more realistic crush profile when
compared to vehicle to vehicle crashes. Notwithstanding the
dummy issues, performance in real world crashes for the eight
vehicles tested in this series can be assessed by studying real
world NASS side impact cases for the same vehicles. Occupant
injuries and intrusion profiles would give an indication of
which regulation provides a more realistic assessment of this
set of vehicles for the U.S. crash environment.

Also, the results from this series of testing were not totally
consistent with the relevant full scale testing by other
researchers. This is mainly attributed to the fluid nature of the
European test procedure, specifically the barrier height changes
and the inconsistent performance of the various European
barrier faces. Additional comparative full scale testing based
on the current European specifications and latest European
barrier designs would provide useful data for further
assessment.

With the caveats described above, the comparative testing
did not provide similar vehicle performance rankings nor
pass/fail results based on the respective injury criteria of the
two side impact regulations. In fact, there was no direct
correlation between the corresponding injury criteria results
for the vehicles tested.

On the other hand, the development of an upgraded side
impact dummy is planned within two years, whether through
the European Commission Consortium SID2000 project or the
ISO WorldSID Task Group. The ongoing dummy development
efforts reflect the consensus of the world scientific community

thn intaract

the interest of safety, an upgraded regulation side

Vi saiviy, adavals

impact dummy is needed. Improvements to both biofidelity and
instrumentation capabilities of the U.S. SID and the European
Eurosid-1 regulation dummies are needed. The Eurosid-1 also

has mechanical deficiencies.

that in
Lid, 1

In addition, the changes in the composition of the U.S.
fleet, with a significant and growing segment of the larger,
stiffer, and heavicr LTV vehicle class, underscores the need to
update the definition of the side impact safety problem in the
U.S. crash environment and determine the opportunitics for
enhancing occupant side impact protection. The test conditions
of the dynamic side impact requirement and the characteristics
of the striking bullet, i.e. movable deformable barrier, would
need to be reassessed relative to the current and future side
crash environment. Fixed objects side crashes also need to be
studied to investigate additional opportunities for enhancing
occupant side impact protection in the U.S. environment.

In conclusion, given the results of the current testing, in
particular the measurement anomalies in thc Eurosid-1,
insufficient data is available at this time to make a tentative
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determination of functional equivalence of the two side impact
standards. Using the NHTSA side impact harmonization plan
as a guide, the agency will establish its current position on side
impact harmonization based on all available information.
From this baseline, a plan will be developed for advancing side
impact safety in the U.S. fleet taking into account the level of
available resources. It is hoped that the current efforts to
merge the European SID2000 and ISO WorldSID dummy
development projects succeed and result in an advanced
harmonized side impact dummy which can be commonly
produced and used world wide. Harmonization research can
then focus on evaluating the advanced world side dummy and
its application in the next generation side impact safety
standard(s). Harmonization of the dummy and injury criteria
is a basic premise in achieving a global harmonized side
impact regulation. While differences in the fleet composition
and crash involvement may preclude totally harmonized test
conditions and movable barriers, the use of a single dummy
family would significantly alleviate the current burdens of
vehicle design, testing, manufacturing, and distribution
currently encountered by automobile manufacturers in the
growing global market. It should also lead to improved side
crash protection world wide.
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EUROSID LUMBAR CERTIFICATION TESTS

APPENDIX A
Original Lumbar #191

Date Pulse Flexio | Time Theta A | Time Theta B | Time Lab Pass/F

n (39-53) | 31-35) | (45-55) | (27-31) | (45-55) ail

(45-

55)
05/02/97 ok 49.5 46.4 33.6 49.1 29.4 49.8 FTSS Pass
05/12/97 99% 52.6 49.5 35.6* 49.5 3L.2* 48.3 FTSS fail
04/09/97 ok 53.3 51.0 37.1* 51.0 32.7* 52.0 MGA Fail
05/27/97 ok 48.8 50.0 33.2 50.0 29.3 46.0 MGA Pass
05/29/97 ok 50.9 48.3 35.0 48.6 30.7 47.6 MGA Pass
05/29/97 ok 50.5 493 344 49.3 31.3* 45.6 MGA Fail
02/03/97 ok 49.9 50.1 33.5 49.7 30.5 49.5 TNO** | pass
02/04/97 ok 49.1 47.9 32.9 473 30.6 48.3 TNO** | pass
04/11/97 Bit out 54.1 45.6 37.0* 454 32.4* 494 TRC fail

high

05/13/97 ok 51.4 475 35.5% 47.5 31.0 475 TRC fail

*  Does not meet specifications
** Qriginal certification

\raldanis] - s ww
NOTE 1 : MGA ran with a lightcr pendulum basc after 4/14 (800 g

NOTE 2 : MGA ran with a thinner base plate after 5/26 (total pend um
NOTE 3 : MGA lab temperature prior to 5/30 is 70° F and 68° on 5/30

h 72.41 inches)

2 2
\/

Lumbar for Eurosid-1 # £1-213

Date . Pulse Flexion | Time Theta A | Time ThetaB | Time Lab Pass/Fail
(45-55) | (39-53) [ (31-35) | (45-55) [ (27-31) [ (45-55)
05/12/97 | ok 48.1 48.5 30.7* 48.1 27.8 475 FTSS Fail
04/04/97 | ok 49.5 47.0 322 47.0 303 45.0 MGA Pass
05/27/97 | ok 46.9 47.0 32.6 49.0 29.2 48.0 MGA Pass
05/29/97 | ok 47.3 478 32.6 47.6 29.1 48.1 MGA Pass
05/30/97 | ok 45.7 449 310 45.6 28.8 46.0 MGA Pass
05/13/97 | ok 47.0 47.0 32.0 47.1 283 46.6 TRC Pass
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EUROSID LUMBAR CERTIFICATION TESTS

Replaccment Lumbar#183

Date Pulse Flexion | Time Theta A | Time Theta B | Time Lab Pass/Fail
(45-55) | (39-53) | (31-35) | (45-55) | (27-31) | (45-53)
04/23/97 good 49.0 46.7 32.37 46.6 29.35 47.8 FTSS Pass
05/12/97 good 495 48.0 33.3 479 29.5 49.0 FTSS Pass
04/11/97 good 48.3 42.7 33.1 42.43% 30.10 46.05 MGA Fail
04/15/97 bad high | 50.52 45 3541%* 46.18 31.33* 45.68 MGA Fail
04/16/97 95% 52.0 50.4 36.6* 50.4 3].8% 50.7 MGA Fail
high

04/29/97 good 47.82 49.0 33.01 49.0 30.86 45.0 MGA Pass
(11:00)

04/29/97 good 50.47 50.0 34.91 51.0 32.23% 49.0 MGA Fail
(20:02)

04/30/97 good 50.4 49.0 34.5 49.0 31.9% 48.0 MGA Fail
04/30/97 good 49.44 49.0 34.03 49.0 3]1.32% 50.0 MGA Fail
05/27/97 good 48.8 46.0 33.5 46.0 28.4 46.0 MGA Pass
05/29/97 good 497 48.1 33.6 48.0 30.4 48.6 MGA Pass
05/29/97 good 499 47.4 34.35 475 31.46* 456 MGA Fail
(17:01)

05/30/97 good 48.2 46.1 33.0 46.6 30.46 45.9 MGA Pass
04/18/97 95% 52.5 44.0 35.2% 43.8* 31.4* 43.5% TRC Fail

high
05/13/97 good 51.6 46.6 34.0 46.8 30.7 46.9 TRC Pass
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ABSTRACT

Beginning in model year 1997, BMW introduced
an innovative head protection system HPS called the
Inflatable Tubular Structure (HPS). Tests indicate that the
system dramatically reduces the severity of head impacts
in side crashes.

This investigation is an evaluation of casualty
abatement benefits that are derived from applying injury
measures based on the HPS test results to the population
in US National Accident Sampling System (NASS/CDS).
The results of component and vehicle crash tests are
summarized. The procedures for estimating benefits are
described along with the benefits in terms of injuries
mitigated, maximum injuries to occupants mitigated, and
fatalities prevented.

The calculated benefits of the HPS in re
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o A 4l
Lal.auuca anda tnc most sericus Adjuiivo t

occupants of passenger cars are:

ducing

Casualty Reduction for HPS

Casualty Class Reductions
Fatalities 1,344
AIS 2.5 Injured 2,598

The impact mitigation benefits were derived from
reducing injuries from head impacts to the following
components: A & B pillars, side rails, window frames &
glass, and window-pillar interfaces. Approximately 51%
of the reductions in fatalities were attributable to the
mitigation of head impacts with these components. The
remaining 49% of the fatality reductions were associated
with mitigation of exterior contacts and prevention of
ejection through side windows.
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According to the US National Accident Sampling
System, the population injured in tow-away motor vehicle
crashes suffers an average of about 3 injuries per person.
The accounting system used in the tables above does not
give credit for injury reduction when the injury is not the
most severe of all injuries suffered by an injured person. If
the less severe injuries are considered, there is a much
larger opportunity for injury reduction. When considering
all injuries, the injury reductions for the HPS system are:

HPS Injury Reductions for Front Seat Occupants,
All Injuries Considered

Casualty Class Reductions
AIS 3-6 Injuries 3,902
AlS 2-6 Injuries 8,501

The benefits cited are over and above the benefits
offered by other safety systems. These systems include:
frontal air bags, side air baos FMVSS 214 side impact
protection, and FMVSS 201 head protection for the

vehicle roof and headers.

THE BMW HEAD PROTECTION SYSTEM HPS

In the opinion of accident researchers, in side-
impact collisions top priority should be given to protecting
the occupants head. Yet there was no sufficient protection
device available so far.

In 1997 BMW started to equip their cars with the
so called Head Protection System HPS, also known as
ITS, Inflatable Tubular Structure. This device offers the
opportunity of deploying a gas filled tubular cushion of
about 130 mm in diameter to increase the protection of the
head and face. It is offered as standard equipment for the 5
and 7 series and will also be standard fit for the new 3



series car when it is launched in a couple of weeks from
now.

The HPS is a unique technology and BMW is the
only company to offer an additional protection device for
the occupants head and neck. The first ideas were
presented at the 14" International Technical Conference
on the Enhanced Safety of vehicles ESV in Munich,
Germany in 1994. Its function and test results were shown
in a presantation at the 15" ESV Conference two years
later in Melbourne, Australia.

Since then a lot of improvement has been done
and a lot of positive experience has been gained, either
from tests but also from statistical analysis and accident
researchers are even aware of some real life accidents in
which the HPS has performed perfectly in reducing
injuries.

The HPS consists of the following components:

e Inflator - For the production of the filling
medium a pyrotechnical gas generator is installed
underneath the instrument panel

e Flexhose - a flexible hose leads the gas flow from
the inflator to the restraining cushion

e Bladder - a gas sealed bladder is filled with the
medium and expands its diameter

e Braid - surrounding the bladder a braiding texture
ensures the tension to contract the system

The undeployed HPS is packaged behind the
interior trim parts of the A-pillar and the roof liner of
each side of the vehicle. On both ends the system is
fixed to the body in white. In case of a side collision
with sufficient severity the inflator is activated and the
system is filled with gas. During this increase of the
tubular structure element, a remarkable tensioning
force is created which contracts the tube.

Since the length of the stored system is longer
than the shortest distance between the two anchorage
points, while contacting the tubular structure is pulled
out of the trim and placed in position right beneath the
occupants head.

The remarkable tension provided through the
effect of a change in the orientation of the fibres in the
braiding material restraints the occupant’s head
without significant neck bending moments.

TESTING FOR EFFECTIVENESS ESTIMATES

BMW conducted a variety of tests to assess the
reduction in HIC offered by the HPS. These tests included
sled tests with dummies, tests with the Free Motion
Headform (FMH) specified in FMVSS 201, and vehicle
side impacts with moving barriers and poles. A list of test
result samples is shown in Table 1.
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Table 1
Test Results Tests With and Without HPS

Test Configuration  Delta- HIC HIC
Type V kph w w/o

HPS HPS
Vehicle ECE R 95 Side 20 90 97
Vehicle FMVSS 214 17.5 212 193
Vehicle Rigid Pole 30 277 2495
Vehicle Rigid Pole 32 620 4720
Vehicle Moving Pole 40 475 1867

The test data shows large reductions in the head
injury criteria (HIC) for tests conducted in accordance
with US and European side impact procedures. In
addition, tests into rigid and moving poles show dramatic
HIC reductions - much larger than could be expected with
a practical thickness of conventional padding.

Severe crash tests into a rigid pole at 20 mph
have been conducted independently by the Insurance
Institute for Highway Safety. Results are included in Table
1 (Rigid Pole 32 kph).

Rollover tests conducted by NHTSA have
demonstrated the ejection prevention capability of the
HPS.

In static deployment tests the HPS was deployed
against a dummies head to evaluate potential risks in Out
Of Position situations. A 5% percentile fernale dummy
was leant against the side glazing such that the HPS
contacted the top of the head when the deployment speed
was on its maximum. In this test the maximum axial neck
force was .7 kKN. This is well below any dangerous values.

APPROACH TO THE BENEFITS ANALYSIS

When deployed, the HPS provides primarity
protection of a front seat occupant's head and face against
impacts with a car's: A-Pillar, B-Pillar, Side Rail, Window
Frame & Glass, Window Pillar Interfaces, and other upper
side interior car components,

In addition to casualty abatement as cited above,
the HPS, when deployed, is capable of reducing occupant
ejections through front side windows. Consequently, the
HPS reduces injuries and casualties associated with all
external injuring sources, for the ejected occupants at
issue.

The first objective of this investigation is to
identify all head and face injuries, and injury outcomes in
tow-away car crashes, associated with an occupant's crash
contacts for which the HPS has the ability to influence.

The second and most important objective of the
investigation is the evaluation of casualty abatement
benefits that derive from the HPS. More detailed data on



the non-applicable contacts may be found in the final
report of the study (Digges, 1997).

DATA SOURCES

Due to the demand for high resolution of car,
occupant, and injury attributes in this investigation, the
NASS/CDS file is the main source of data. The available
nationally representative samples in this file, for
1988-1995, include about: 44,000 towaway cars, 91,000
crash involved occupants, and 188,000 injuries, before
projection to national estimates.

The sample volumes cited above are generally
adequate for addressing the issues of this investigation
with sufficient resolution concerning: crash modes, injury
attributes including severity and injuring contact, and
occupant outcomes.

CATEGORIZATION OF CAR OCCUPANT
INJURIES

The annual incidence of car occupant injuries is
classified in this investigation on the basis of several
injury and occupant attributes, crash configurations, and
HPS applicability domains. Specifically the following
classes and subclasses are distinguished and applied in the
estimation procedure of injury reduction and outcome
abatement.

The injuries at issue are head and face injuries,
AlIS=1-6, due to contacts with upper interior parts and
surfaces of cars, specifically: A Pillars, B Pillars, Other

Pillars, Window Frames & Glass, Window-Pillar
ces, Side Rail Front Headers, Rear Headers, and

Tntarfans
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injuries to any body region due to exterior contacts of car
occupants ejected or partially ejected through the front
windows.

The annual US incidence of the cited injuries is:
182,855. This is about 4.6% of the total 4,040,000 injuries
sustained each year by car occupants in the US. The
balance of injuries (4,040,000 - 182,855) are not at issue
here, since these injuries may not be influenced by HPS
application.

The universe of injuries at issue here, about
182,855 per year, is partitioned and analyzed in all
possible combinations of relevant crash configurations,
injuring contacts, and injury severities. A total of 186
combinations of AIS, Injuring Contacts, and Crash
Configurations results.
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CRASH CONFIGURATIONS

For accounting convenience, eight
crash/occupant configurations were defined. Five were
configurations in which the HPS can influence the
outcome. These are defined as applicable configurations.
The crash configurations applicable to ITS mitigation are:
(1) No Rollover, No Ejection; (2) Rollover, No Ejection;
(3) No Rollover, Ejection; (4) Rollover, Ejection; and (5)
Too Severe (Catastrophic Vehicle Damage). The
configurations not applicable to HPS protection ar: Front
or Rear Header Contacts and Rear Seat Occupants. HPS
effectiveness is based on all injuries in the crash
configurations listed above which are applicable to HPS
deployment.

EXCLUSION OF BENEFITS

Catastrophic crashes are excluded from HPS
benefits. These are defined as crashes with either (1) total
delta V over 60 mph; or (2) lateral delta V over 40 mph;
or (3) extent of damage 4 or higher in CDC scale, when
the specific side impact location includes the passenger
compartment.

Injuries of rear seat occupants are excluded from
HPS benefits, and so are all occupant injuries due to front
and rear headers. Such injuries are abated by
countermeasures other than the HPS, that may act
concurrently. All exterior contact injuries of ejected car
occupants benefit from HPS deployment, only if the
occupants are ejected via front windows; benefits of
qualified ejectees are discounted by 20% in reflection of
side effect injuries incurred as a result of retention within
the passenger compartment by HPS action.

CONSEQUENCE OF OTHER
COUNTERMEASURES

The 1988-1995 NASS data does not adequately
reflect the benefits of recently introduced safety
improvements. Two of these improvements are: (1) frontal
air bags and (2) upper interior head protection. The frontal
air bags have been phased in during the past four years,
and the upper interior head protection will be phased in
during the following four years. Each of these safety
systems will reduce the NASS reported level injuries for
head and face impacts. Some of the protection provided
by these systems supplements the protection provided by
the HPS. The presence of the frontal air bag will provide a
high level of protection against head and face impact with
the A-pillar. The upper interior head protection will
reduce the severity head and face impacts with the pillars,
side rails and headers. In cases in which it deploys, the



HPS is expected to provide much greater head protection
for relevant impacts than that offered by  other
countermeasures.

A supplemental benefit is applicable in case of no
HPS deployment for head and face injuries from contact
with the A Pillars. The benefit is achievable by virtue of
the main air bag and is applicable for cases of total delta V
over 15 mph, i.e. main air bag deployment, irrespective of
HPS deployment. The specific benefit is that all head and
face injuries due to contact with the A Pillars are reduced
to an AIS=1 severity.

Another supplemental benefit is applicable to
contacts with A-pillars, B-pillars and side rails in cases of
no HPS deployment. Head protective padding on these
interior surfaces will limit the HIC to 1000 when tested
with the Free Motion Headform (FMH) specified in
FMVSS 201, at an impact speeds of 20 km/hr (12 mph).

Adjustments were made to the NASS 1988-95
data to reflect the injury reductions from the two
supplemental benefits listed above, under crash conditions
in which the HPS does not deploy. The adjustments were
made only to contacts which are relevant to HPS
protection.

Other safety improvements are likely to enhance
the protection offered by HPS. These include improved
side impact protection and side air bags for the chest and
pelvis. These improvements mitigate the most serious
injuries  body regions other than the head. The
combination of features will further reduce the overall
severity of injuries and impairment to the occupant. These
improvements do not address head/face injuries and no
adjustment for these additional safety features is
considered in this analysis.

The increasing use of safety belts in the United
States may also reduce injuries in side impacts,
irrespective of the HPS. Some of the increases in safety is
being offset by the increasing number of light trucks, sport
utility vehicles and large cars in US highways. These
vehicles increase the severity of side crashes. No
adjustment was made for these offsetting factors.

HPS DEPLOYMENT CRITERION

The primary HPS deployment criterion is a
lateral delta V of approximately 24 km/hr (15 mph) or
higher in planar crashes, imrespective of subsequent
rollover. A 30% deployment is applicable for roilovers,
based in an analysis of accident data.
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HPS Abatement Schedule

Except for the supplemental benefit cited above,
the basic mechanism for reduction of head and face injury
severities is the large reduction of HIC offered by the HPS
when deployed. The HIC associated with a deployed HPS,
as a function of lateral delta V, has been determined by
test data as shown in the points of Figure 1. The line in
this figure represents a best fit to the points, i.e.
HIC=18.8*latdv, where latdv is in mph.

Figure 1:
Vehicle Crash Severity Vs, HIC for HPS
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Figure 1 provides the basis for translating the
crash severity values for each crash in NASS/CDS to
values of HIC experienced-by occupants when the HPS is
deployed. In turn, the experienced HIC values are
translated into sustained head or face injury severities
(AIS), as per NHTSA's preferred ways [NHTSA, 1995].
The relationships are:

%AIS1 = 100/[(1+exp( 1.54+(200/hic)-.00650*hic))-
(1+exp( 2.49+(200/hic)-.00483*hic))];
%AIS2 = 100/[(1+exp( 2.49+(200/hic)-.00483 *hic))-
(1+exp( 3.39+(200/hic)-.00372*hic))];
%AIS3 = 100/[(1+exp( 3.39+(200/hic)-.00372*hic))-
(1+exp( 4.90+(200/hic)-.0035 1*hic)));
%AIS4 = 100/[(1+exp( 4.90+(200/hic)-.00351 *hic))-
(1+exp( 7.82+(200/hic)-.00429*hic))];
%AISS5 = 100/[(1+exp( 7.82+(200/hic)-.00429*hic))-
(1+exp(12.24+(200/hic)-.00565*hic))];
%AIS6 = 100/[(1+exp(12.24+(200/hic)-.00565*hic))];
%AISO = [100-(%AIS1+%AIS2+%AIS3+
%AIS4+%AIS5+%AIS6)]



where %AIS1, 2, 3, etc. are the projected probabilities, in
percent, of head or face injury occurrence at shown AIS
severities. The graphical representation of these
relationships is shown in Figure 2.

Figure 2:
Relationship Between HIC and Injury Risk

50% AISO
70% AlS1
2 60%
x 850%L \ |- AIS2
£ 40%
= 300/: —._._AIS3
2 20% - = wAIS4
= 10%
0% eSS B B AISS
(=} [} [=] o [~}
S § 8 8 8| . _Fal
HIC

In addition to the reduction of head and face
injuries originating from interior contacts, injuries to any
body region due to exterior contacts are all but eliminated.
Earlier studies indicated an 80% reduction in injuries was
attributed to occupant containment within the vehicle
(Malliaris, 1985). The mechanism in effect in this case is
the HPS prevention of ejection for qualified occupants.
BMW studies of accident data indicate that 30% of
rollovers have a lateral acceleration of sufficient
magnitude to deploy the HPS.

INJURY OUTCOME

The principal benefit of the HPS is to mitigate
head and facial injuries. In instances where ejection is not
involved, the HPS is assumed to have no influence on
mitigating injuries to other body regions. However, for
occupants with multiple injuries, the reduction of any of
the most severe injuries reduces the risk of death and
impairment.

The benefits analysis to follow addresses injury
outcomes at three categories - Category 1, Individual
Injuries; Category 2, Most Severe Injuries; and Category
3, Fatalities.

Most injured occupams suffer multiple injuries.
On average, injured occupants in NASS have 3.4 injuries.
It should be noted that NHTSA’s benefit analysis for
FMVSS 201, considers only those injured occupants
whose most severe injury is a head or face injury. No
benefits are assigned to reducing head and face injuries
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present. Consequently, many of the head and face injuries
reduced by the countermeasure are not considered. The
Category 1, individual injury, benefits considers all
relative injuries, without regard to the outcome of the
injured occupant. This approach may over count the
benefits, since a sall number of the injured occupants may
die from injuries to body regions which are not influenced
by the HPS.

For Category 1, individual injury, benefits the appropriate
NASS records of crash exposed car occupants are
addressed for each injury as implied by configuration,
injuring contact, and injury severity. A computer
algorithm is applied which incorporates the abatement
schedule containing categorical information about: (a) the
HPS effectiveness in reducing injury severity based on
HIC reduction; (b) applicability limits; and (c) side
effects. The first pass is made assuming no HPS action.
Subsequently, a second pass is made assuming full HPS
action under the conditions and exceptions discussed
earlier. Thus are obtained the projected injury reduction
benefits offered by an HPS application, and the percent
effectiveness of this application, defined as:
(before-after)/before.

The Category 2, most severe injury, benefits
examines the outcomes of injured survivors, by the AIS
level of their most severe injury (MAIS). Injury reduction
is applied only if the mitigated injury is the most severe
injury. This approach under counts the benefits, because
reductions in impairment from head injury may not be
counted when the head injury is not the most severe
injury.

The relatively simple procedure described for
evaluating the reduction of individual injuries is not
applicable in the evaluation of outcomes, as an occupant’s
outcome is not the result of a single injury. Rather, it is the

collective effect of all injuries incurred by this cccupant.

For each injured survivor, the entire set of an
occupant's up to 45 injuries is addressed. Each occupant's
maximum injury severity and the corresponding
classification attributes (injuring contact, injured body
region etc.) are determined before, as well as after an
abatement schedule has been applied.

An occupant's classification by most severe injury
is subject to a further control, namely: no abatement of an
applicable injury, e.g. head or face injury by upper interior
car component, is registered when there is one or more
non-applicable injuries of equal severity for the same
occupant.

Thus, counts of occupants by most severe injury,
(both before and after abatement application) in
conjunction with other injury attributes become the basis
for the most straightforward evaluation of outcomes for
injured survivors.

The Category 3, fat